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PREFACE

On October 4, 1957, the Soviet Union launched the first
artificial earth satellite in the world, laving the developmental
groundwork for aerospace technolegy. This has already given man-—
kind many important discoveries with many important practical ap-
plications.

As we know, the enormous diversity of tasks in space has al-
ready required the launching of hundreds of artificial Earth sat-
ellites and dozens of space vehicles to the Moon and other planets
in the Solar System. In all cases, we must be able to solve radar
location problems for the space vehicle, or measure its parameters
of motion (its orbital parameters) and to determine the coordinates
or parameters of motion of other objects.

Determination of parameters of motion is ordinarily carried
out in two stages, tantamount to "radiotechnical" and "ballistic"
parts of the problem. The so-called first processing stage is
where signals received by the radar equipment undergo optimum
processing in terms of space vehicle [SV] coordinate determination
and their derivatives with respect to the radar device. The sec-
ond stage is where the SV parameters of motion (orbital parameters)
are determined and given prognosis in terms of these data using
a computerized stellar mechanics device.

P. Olyanyuk's bock is interesting in that the direct re-
lationships of unknown parameters of SV motion are formulated
as a function of received signal structure (these signals being
signals with regularly varying parameters) and the potential
accuracy of radio-technical measuring units is defined. The
author devotes particular attention to the relatively great
determinacy of motion of many SV and thus the comparatively great
correlation time of motion parameter fluctuations. This all al-~
lows a prolonged accumulation of signal and consequently, one
may increase accuracy of measurement for parameters of motion.
The generalized autocorrelation functions which the author logic-
ally introduces for signals with regularly varying parameters let
us directly evaluate the ponderability of apriori data and ac-
curacy of the measuring means.

A similar approach, though remaining within the framework
of the accepted theory of statistical solutions, may also be of
interest from the methodologic point of view, in that it lets us
clearly evaluate the accuracy of various radiotechnical units and
synthesize their optimum design. The cited material is sufficient
to aid the reader in finding concrete applications for the sug-
gested methodology.

A. Bogomolov
Corresponding Member of the
AS USSR

ii



LIST OF SYMBOLS AND NOTATIONS

amplitude of received signal

amplitude of reference signal, shaped at receiver in
terms of apriori data

amplitude of modulated carrier

semimajor axis of Keplerian ellipse

equatorial radius of adopted reference ellipsoid of
the Earth

correlation matrices of measurement error in apriori
data

geodetic latitude and its rate of change

length of side of square antenna or diameter of round
antenna

eccentric anomaly

eccentricity of Keplerian ellipse

eccentricity of reference ellipsoid of Earth

Dopplerian frequency drift

frequency of carrier oscillation

vector of parameters of motion of space vehicle in
geocentric rectangular system of coordinates

its coordinates and velocity components

altitude with respect to surface of adopted reference
ellipscid

informativeness of trajectory with respect to some
quantity £

zero-order Bessel function of imaginary reasoning

angle of orbital inclination

transform matrix

e J ; Jg transform matrix of differentials in

s

transition from rectangular, cylindrical, spherical,
and geodetic system to initial rectangular system
Jacobi transition matrix from coordinate £ to co-

ordinate g
iii
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wave number

geodetic longitude

mean anomaly at time t0

height of amplitude modulation; number of defined
parameters of motion

radius of curvature of first vertical circle on sur-
face of reference ellipsoid at point of observ-
ation

spectral density of interference

complex amplitude of interference

instantaneous value of interference

transition matrix from differentials of Keplerian

parameters to differentials of initial conditions of

motion in an inertial rectangular system of coordin-

ates, its kth row and jth column (Chapter VI); radi-

ated power of on-board transmitter (Chapter V}.

parameter of Keplerian ellipse

Qg vectors of linear components of coordinates of

cylindrical, spherical, and geodetic systems of re-

ference

vectors of real and apriori values of parameters of

motion, vector of Keplerian parameters

vector of difference between actual and apriori values

of parameters of motion

vector of undefined parameters of motion

g

spherical, and geodetic cocrdinate systems

vectors of parameters of motion in cylindrical,

Rg matrix of revolution in transition from dif-
ferentials of cylindrical, spherical, and geodetic
systems of reference to differentials of rectangular
coordinates .

matrix of revolution, describing rotation of rect-
angular system of coodrinates around axis z at angle
A



r(t), ra(t) instantanecus distance between observer and

space vehicle and its apriori value

Fpr rZa geocentric radius-vector of space vehicle and its
apriori value

Trr Tra geocentric radius-vector of space vehicle and its
apriori value

e linear coordinate of a spherical system

reo! Teca geocentric radius-vector of center of antenna and its

apriori value

Ta radius-vector of instantanecus point of antenna

S active surface of receiving antenna

s(t,r) instantaneous value of signal

T time of observation of duration of measurement

t, t(0) instantaneous time and some defined value of it

UC,;, Us;,,Ug matrix of covariance of differentials of velo-
city components of rectangular system of reference
with differentials of components of cylindrical,
spherical, and geodetic systems

u angle of latitude

A4 volume of space occupied by elements cof receiving

antenna

V. .+ V o Vg matrix of covariance of differentials of velo-

city components of cylindrical, spherical, and geo-

detic systems of reference with differentials of

components of a rectangular system

velocity of space vehicle

group and phase rates of propagation of radiowaves

s W -, W matrices of direct transformation of differentials

of coordinate components in transition from cylindrical,
spherical, and geodetic systems of reference to rect-
angular

W matrix of direct transformation of differentials in
transition from Keplerian elements to initial con-
ditions of motion in a geocentric inertial rectangu-
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lar system of reference

Wi matrix-squares forming the matrix w,, i = 1,2,3,4

W (x) probability density of a random quantity

X, ¥, 2 rectangular coordinates

X =]|xlx2x3||t topocentric radius-vector of space vehicle

X = UT/p generalized coordinate (Chapter V)

Y(t,r) complex amplitude of a constructive mixture of signal

and noise

y(t,r} instantaneous value of signal-and-noise mixture

Z space-time autocorrelation function (ACF) of signal
field

Zn autocorrelation function of fluctuations in the

period of revolution of an artificial earth satel-
lite

Zan autocorrelation function of fluctuations in the rate
of change of pericds of revolution of an artificial
earth satellite

A z-coordinate of cylindrical system of reference

signal energy

E, signal energy expended during kth interval of correl-
ation of fluctuations of initial phase

o vector of signal parameters

g, B vector of random signal parameters, initial phase

Y, Ya,AY angular topocentric coordinate of space vehicle, its

apriori value and the difference between them

e actual anomaly

¢ = kZPS/8T generalized parameter

A wave length of oscillation carrier

Ac ' AS longitude in cylindrical and spherical system of
reference

gravitational constant of Earth
£, M+ T cartesian geocentric or topocentric coordinates of

space vehicle at some point in time (initial con-
ditions of motion)
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p traverse distance (Chapter V), second linear coordinate
of cylindrical system of reference (Chapter VI)
T time lag (Chapter II), moment of transit of perigee
(Chapter VI)
law of signal phase modulation
phase of interference
frequency of modulation, longitude of ascending node

E D e B

signal freguency; angular distance of perigee

al.az,a3,81,82,83 Jacobi elements

H, g, h, L, G, 1 canonical elements
Py Wy W, L,pl,A first system of Poincare elements
52 Ny El L,nz,l second system of Poincare elements
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INTRODUCTION

This book treats questions on the theory of signal processing
in aerospace measuring units, which include orbital measuring
units, terrestrial and orbital navigation by satellite, and space
geodetic units. Aerospace measuring units have a number of spe-
cific features, such as the following:

1. They are designed to determine the parameters of motion
of objects whose trajectory has significant determinacy, result-
ing from the relatively small number of random disturbances af-
fecting them. Research has shown that the duration of the para-
meter fluctuation interval of orbits induced by wvariations in
atmospheric density is on the order of a day [30]. Space measur-
ing units greatly differ from radar units in this respect. Radar
is designed to determine the parameters of motion of objects
travelling in the atmosphere. The correlation interval of a
random velocity component, in the latter case, is on the order of
seconds or minutes.

2. The great quantity of the measurement process lifetime is
the result of space vehicle trajectory determinacy. We know that
the overall duration of this process may be several hours: meas-
urements may be made during the indicated time or in short spans
of time which are not contiguous but fall within the limits of
the orbital parameter f£luctuation correlation interval.

3. A particular feature of aerospace radiotechnical units
is the great dispersion of measuring means in space. In spite of
this, with accurate synchronization of the work of individual
telemetry units, the aerospace unit as a measuring system is a
unified entity.

4. To measure the parameters of motion of space vehicles,
we may use both short pulsed signals, whose phase fluctuation
correlation interval is small, and long continuous signals whose
phase fluctuation correlation interval may be extremely great.
Continuous emisgion is inherent in phase and Doppler systems of
measurement and permits us to produce signals of high energy with
comparatively low radiation power. The development of continucus
emission systems was promoted by successes in the field of signal
generation (high frequency stability) and achievements in some
other fields of modern radioelectronics. In using a continuous
emission system we must deal with the fact that signal parameters
carrying useful information fluctuate within wide limits during
the period of measurement.

5. Aerospace measuring units may be used for direct measure-
ment of instantaneous distances, angles and their derivatives.
The final goal of measurement, however, is to determine parameters
of motion. These may be initial values of coordinates and velo-
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city, Keplerian elements of motion, navigation, geodetic and
geophysical parameters. A typical feature of parameters of motion
is that their constancy interval significantly exceeds the con-
stancy interval of topocentric coordinates and velocity.

6. Parameters of motion are determined under conditions of
interference, which are theoretically nonremovable inteferences
of the fluctuation type.

All these features are intrinsic to orbital measurement
units and satellite navigation and geodesy systems as well.

The theory of aerospace measuring units, which units the
theory of radiotechnical measurement methods for parameters of
motion and the theory of determining orbits, has now been rather
thoroughly developed.

The primary content of the theory of radiotechnical methods
of parameter of motion measurement constitutes problems of iso-
lating signals under the influence of random disturbances. The
modern state of the theory of methods of signal isolation on the
background of fluctuation interference may be described in the
following manner. Methods have been developed to isolate signals
which are purely random processes and have instantaneous wvalues
which are of random magnitude, characterized by certain laws of
distribution. This type of signal is encountered in automatic
control systems, in control systems, in data transmission ana-
log systems, and so forth. Therein, they represent useful in-
formation and yield to the most possibly accurate reproduction.
We are indebted to N. Viner and his followers for the establish-
ment of this. The mathematical fonndations of the theory were
lain by the fundamental work of A. N. Kolmogorov, N. Viner, R.
Ye. Kalman and others [12, 291.

On the other hand, another branch of the theory of signal
filtration has developed in response to the needs of radar and
radio-navigation. The basic content of this theory is the iso-
lation of regular gignals having random parameters. As we XKnow,
radar and digital systems of communication use modulated and
unmodulated signals of the harmonic type, whose individual para-~-
meters (amplitude, frequency, phase, location in time) are used to
represent useful information and are by nature random.

The most characteristic task in this case i1s the isoclation
of signals having random parameters, whose magnitude is kept con-
stant during the measurement process. 8Since we know the nature
of the signal being received, the filtration process consists
only in determining the informative parameters of the signal,
and not in reproducing the shape of the signal which, in the
receiving process, may become extremely distorted.
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The mathematical foundation of the theory of isolation of
regular signals having constant random parameters is composed of
the theory of evaluating distributive parameters of random
quantities (or processes), which represents an important division
of modern mathematical statistics. The mathematical apparatus of
the theory begins with Gauss, but it received its further develop-
ment in the last few decades in the works of R. Fischer, G. Kra-
mer, Yu. Linnik and other mathematicians, as well as in the works
of V. Kotel'nikov [10], F. Woodword [5], V. Siforov, Ya. Shirman
and other radio specialists.

The development of the theory of signal isolation is now
undergoing further development.

From the evaluation of one or two informative signal para-
meters (the most practical interest is offered by such parameters
as signal lag time, which carries information about range, and
frequency, which describes the velocity of the object and re-
presents a linear term of phase lag in a Taylor expansion)we have
come to the task of evaluating a larger number of parameters. The
number of additionally defined useful signal parameters included,
specifically, the second and higher derivatives of range. These
questions were developed in the studies of Ye. Kelly, R. Vishner,
S. I. Krasnogorov and others. The evaluation of the magnitude
of derivatives of high orders makes possible a more thorough
description of motion and a more accurate reproduction of the law
of motion of an aircraft.

Another trend in the development of a theory of signal iso-
lation is associated with the consideration not only of time, but
also space properties of signals. If the signal is initially con-
sidered only as a process developing in time, and filtration has
been reduced to consideration of just time oxr spectral distinctions
of the signal and interference, then we would now have in mind
both time and space properties of the useful and interfering
electromagnetic fields in a defined area of space. This approach
is not only associated with the fuller utilization of information,
but also with a differcnt solution of the filtration problem which
allows the simultaneous determination of range and velocity, and
the angular coordinates of objects and their derivatives as well.
In terms of the results of repeated measurement, the space-time
filter makes it optimally possible to determine the position of
an object in space and its rate of travel. Various aspects of
the theory of space-time filtration of signals were developed
in the work of R. Bracewell, G. Urkowitz, S. Fal'kovich [23] and
others.

The operations performed on signals in the process of de-
termining the topocentric coordinates and velocity are sometimes
called primary processing.

X



The second constituent part of the theory of measurement of
bparameters of space vehicle motion embraces questions of secondary
processing of orbital information, which comprises the basic con-
tent of the theory of determination of orbits.

In its most general aspects, the task of determining orbit
includes the determination of some set of parameters which un-
ambiguously describe the motion of a space object, in terms of
data obtained in measuring geometric and kinematic quantities
connected with the parameters to be determined. These parameters
are determined by functional relationships. In processing meas-
urement data, we achieve a union of measurement data and an
attenuvation of random error effects. The mathematical foundation
of the theory of orbital determination is composed of a stellar
mechanics device and the statistical theory of evaluation of
distributive parameters, which was already mentioned. In this
regard, the most practical application was produced by the method
of least squares developed by K. Gauss. A rather complete pre-
sentation of the possibilities of the theory of orbital determin-
ation as it applies to problems of trajectory determination of
space vehicles is given in the famous studies of P. El'yasberg,
V. Yastrebov, E. Akim, T. Enevev, and others.

Among those methods of data processing which have been
developed in recent years, we should note the dynamic filtration
method developed by R. Bettin, which encompasses the conditions
of data processing realized in proportion to the access of mea-
surement data and proposing the use, in each subsequent stage of
analysis, of the results of trajectory determination from the
preceeding stages. This method enalkles us to increase the oper-
ational character of data output on the orbit.

The existing theory of space measurement units ensures the
solution of the basic problems facing them, and makes it possible
to plan and make use of high-accuracy units of various design.
Several limitations are intrinsic to it, however, and therefore
it does not fully and in all cases permit us to study the laws
of operation of units which, as we know, are of great complexity.

One of the main shortcomings of the existing theory is the
absence of an organic unity of its constituent parts, which leaves
us with an impression of its imperfection. The division of the
theory of units into constituent parts was put together histor-
ically and reflects most organizationally and technically exped-
ient division of the process of determining parameters of motion
into processes of measuring topocentric coordinates and process-
ing the data of these measurements. O0Of course, in the analysis
of unit operation and a mathematical description of the processes,
the examination of guestions of topocentric coordinates and meas-—
urement analysis was done in separate parts which, in most cases,
is fully justifiable. xi



This sort of division may sometimes become a restricting fact-
or. In a framework of an individual examination of "radio" and
"ballistie" problems, it becomes impossible to obtain clear and
sufficiently complete answers to a number of questions which arise
in the selection of efficient specifications for the units. There
are, as we know, interrelated properties of the units which are
of diverse nature, particularly the characteristics of signals
‘(their power, duration and spectral makeup), structural character-
istics (composition of the unit, gquantity and type of directly
measured parameters), characteristics of a geometric nature
(juxtaposition of systems on the Earth's surface). In the trad-
itional approach, it is difficult to evaluate the potential ac-
curacy of space measuring devices. The comparison of the potent-
ial resources of the devices which differ in parameters to be
measured and the study of several other guestions is difficult as
well.

The selection of the basic characteristics of complexes is
extremely complex and requires the consideration of numercus fact-
ors of various type. The mere listing of those quantities on which
an orbital measurement complex depends is enough to convince us of
this.

The accuracy of a single measurement of range and angular
coordinates is defined by the energy, frequency or band width of
the signal received. In turn, the energy of the signal at the
point of reception depends on the distance between the observer
and the space vehicle and thus, on orbital parameters, coordinates
of the receiving point, and the time of measurement.

Orbital determination is egquivalent to determination of the
spatial coordinates and velocity vector of the SV. In view of the
fact that the accuracy of angular determination is not always
sufficient, range and Doppler methods of measurement have received
the widest use, where we have recourse to repeated simultaneous
or nonsimultaneous observations from several points on the Earth's
surface. In this connection, crbital determination accuracy is
a function not only of the accuracy of individual measurements,
but also of the juxtaposition of ground stations, orbital para-
meters, the choice of trajectory segments, and so forth.

Therefore, in selecting efficient characteristics for the
entire measuring complex and its individual components, we must
also take account of signal properties and purely geometric fact-
ore. The manner in which these laws develop their mechanisms of
effect requires that the complex be considered a unified space~time
measurement system.

The problem of evaluating potential accuracy is closely linked
with the problem of selecting efficient characteristics for space
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measurement complexes.

Potential accuracy is the customary designation for the
greatest accuracy which may be attained in measurements using a
measuring system which is free of inherent error; the system uses
a certain signal which provides metric information under conditions
of fully defined disturbances. In other words, potential accuracy
is the accuracy attained without instrumental errors with the
optimum reception of a useful signal against a background of inter-
ference.

The information and reference electromagnetic fields in a
given area of space at a given interval of time serve as the sig-
nals in space measuring complexes. Interference is the noise
electromagnetic field which often may be a random field of the
fluctuation type. As the potential accuracy of the space measur-
ing complex we will understand the limiting accuracy of determin-
ation of parameters of motion (orbital parameters in particular)
which is achieved in the most advantageous utilization of the
fields indicated. We can see from this definition that since
quantities determined with the aid of space measuring complexes
are parameters of motion (especially in orbital parameter traject-
ory measurement complexes) and an electromagnetic field is the
signal, the evaluation of potential accuracy should also be made
with a provision for the radiotechnical and ballistic aspects of
the problem.

On the other hand, we know that to determine some of the
same parameters of motion, we may use the electromagnetic field
in a different manner. Useful information on motion may general-
ly be included in several different field parameters (e.g., in
fluctuations of amplitude and frequency of received signal).
There is, of course, no reason to anticipate an identity of mea-
surement results when different metric data socurces are used.
For that reason, a comparative evaluation of potential feasibility
of radiotechnical measurement methods differing in the type of
information parameter being used is of interest to us. In other
words, along with the problem of evaluating the potential accuracy
of measurements which describe the potential resources of the
field as a whole, we must evaluate the potential accuracy of
measurements with the addition of various field parameters, i.e.,
the task of evaluating potential feasibilities of diverse methods
of measurement.

It is worthwhile to compare such space measurement methods as
the telemetry and Doppler methods. We should mention that a com~
parative evaluation of the potential accuracy of the Doppler and
other known methods of measuring the rate of motion does not en-
counter any problems. But a strictly comparative analysis of the
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Doppler and, let us say, the phase telemetry methods of coordinate
determination can not be done in the ordinary approach: the
comparison of these methods is impossikble in terms of single
measurements of frequency and phase. A comparative evaluation of
these methods in the stage of data processing, without allowance
for energy and properties of the signal is not correct enough.
The sole approach to the measurement problem, which was discussed
above, also happens to be rather attractive in this instance.

The potential accuracy, thus, is an important technical character-
istic of the measuring complex, reflecting the ultimate resources
of the complex as a unified measurement system.

In arranging the methods for evaluating potential accuracy,
it is possible to evaluate the degree of perfection of various
types of measuring devices, to make note of ways of improving
them, to define the degree of perfection of methods and means
used to isclate signals from interference, and to state recom-
mendations for means of improving the methods.

We know that the current theory of optimum signal filtration
and evaluation of potential accuracy of radio-navigation and
radar systems has been extremely fruitful, and has had not only
purely theoretical but alsoc a rather great applied value.

This study will attempt to state the basic questions of the
theory of space measurement complexes which is founded on the con-
sistent application of methods of the theory of statistical solu-
tions and consideration of trajectory determinacy as constituting
one of the basic features of the measurement process. The pro-
cess of measuring parameters of motion, which includes both prim-
ary and secondary signal processing, can be seen as a unified
process whose goal it the determination of orbital parameters,
navigational or geodetic gquantities, i.e., "secondary" parameters
of mtoion.

In turn, a measurement complex which is made up of a large
number of measurement means, concentrated in space and function-
ing in coinciding and non-coinciding segments of time of differ-
ent durations, can be represented as a unified system, implement-
ing space-time filtration of signals for direct determination of
the previously noted "secondary" parameters of motion.

It may generally be stated that this theory is some general-
ization of the current theory of space measurement complexes for
signals whose total duration egquals that of the fluctuation cor-
relation interval of the parameters of motion. Within the frame-
work of the given generalization, we must view the processes of
primary and seccondary signal processing from unified positions of .
the theory of statistical solutions and development of methods
for evaluating potential accuracy of space measurement complexes
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of various types, indluding complexes which contain Doppler
SYSFems of space trajectory determination or navigation and geo-
detic parameters.

The book contains an introduction and six chapters.

The first chapter describes the basic working model of the
signal -- a signal with regularly varying parameters -- and re-
veals the basic properties of signal and interference fields af-
fecting space radiotechnical complexes.

The second chapter is devoted to methods of direct evaluation
of the parameters of motion in terms of the signal acting in a
gien field of space. Therein are cited algorithms for optimum
filtration of signals with regularly varying parameters acting
against a background of an additive random interference field;
and the properties of the autocorrelation function of the aux-
iliary signal field are studied.

The third chapter contains an analysis of evaluative accuracy
for parameters of motion of SV with optimum signal processing;
analytical expressions are given for the maximum value of the
secondary derivatives of autocorrelation functions of the signal
field, characterizing the potential accuracy of measurements with
complete utilization of data resources of the signal's electro~
magnetic field.

The fourth chapter is devoted to an analysis of the potent-
ial accuracy of individual methods of measurement -- phase and
pulse telemetry, Doppler, and goniometric. Therein are cited
examples of a phase telemetry system, whose principle of action
is close to the optimum of the planetary radar system of the
Academy of Sciences of the USSR.

The fifth chapter contains a discussion of potential accuracy
of determination of various systems of parameters of motion. An
attempt is made therein to divide the evaluative process into two
independent parts: the measurement process and the coordinate
transformation process. The chapter examines several properties
of coordinate transformations and an example is given of evaluation
of potential accuracy of the telemetry and Doppler methods of
measuring SV parameters of motion in one pass over the field of
vision. Data are then given on the informativeness of wvarious
segments of the measured trajectory obtained through the use of
the research method presented in this study.

The sixth chapter examines the properties of matrices of the
basic coordinate transformations used in determining orbital para-
meters. Methods are given here for computing the transition
matric and formulary relationships for the most common coordinate
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transforms. Chapter Six was written by V. I. Mikhaylik.
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OPTIMUM SIGNAL RECEPTION AND THE POTENTIAL
ACCURACY OF SPACE MEASURING COMPLEXES

"P. Olyanvuk
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Chapter 1

BASIC FEATURES OF SIGNALS AND INTERFERENCE IN SPACE MEASURING
COMPLEXES

1. Parameters of Motion

The parameters of motion are constant guantities which un-
ambiguously describe the law of motion of an object in a given
interval of time. The number and physical meaning of the parameters
of motion are defined in terms of the mangitude of forces which
give rise to motion, their nature, and the inertial properties of
the object.

The flight of an airplane in the atmosphere, the motion of a
ship on the seas, the movement of an automobile on the ground --
these all result from forces which, in addition to regular con-
stituents, have constituents which are random in nature and are
very great and rapidly fluctuating in magnitude and direction.

The fluctuation rate of random gquantities, as we know, may be
ascertained in terms of the magnitude of the correlation interval.
The duration of the correlation interval of fluctuation rates of
ground and surface objects is not great, usually not in excess of
several or tens of seconds.

Which parameters should be used to describe the motion of such
objects? Toward that end, it would seem we must use the values of
coordinates and velcocity. which are related to points in time which
are separated from one another by a quantity on the order of the
correlation interval duration. Higher derivatives of the coord-
inates in time may be used for a more precise description of mot-
ion.

The law of motion of terrestrial objects may be defined using
radar-egquipment methods by the simultaneous measurement of dis-
tances from several ground points or from one range and its angles.
We may also measure the time derivatives of these quantities,
usually being limited to a definition of the first derivatives.

* Numbers in the margin indicate pagination in the foreign text.



The duration of measurements is small: it should not exceed the
duration of the correlation interval of parameters of motion.

™~
[
o

Due to the variability of the magnitude and direction of velo-
city, the prediction of motion is accompanied by great errors. For
that reason, apriori data on motion is of low accuracy and is not,
as a rule, utilized in the measurement process.

The flight of a space vehicle (8V) is chiefly affected by the
gravitational field and the forces generated by its engines. These
forces are regular in nature. In addition to effects of a reqular
nature, the motion of objects in space is also affected by random
disturbances which are comparatively small. Therefore, the durat-
ion of the correlation interval of velocity fluctuation of the SV
exceeds a similar quantitiy for earth-bound objects by several
orders and may go as high as many hours or days. The motion of
a 8V, thus, is almost completely determinant in nature.

The flight of a space vehicle is also defined by coordinates
and velocity which are related to some specified point in time
within the correlation interval. But since the duration of the
correlation interval of SV velocity fluctuation may be measured
in hours and days, as was mentioned, the motion of a space vehicle
is usually described by only six parameters for the entire inter-
val of operation of the object or for a significant part of this
interval. As was stated, in similar stages of operation of ter-
restrial objects, in terms of duration, we must include a large
number of similar six-element parameter groups.

8V coordinates and velocity at a specific moment in time are
often called the initial conditions of motion, because they are
constant quantities defined in the process of integrating equat-
ions of SV motion. In SV motion in a central gravitational field,
the role of parameters of motion may be filled by Keplerian or-
bital parameters or some other sets of geometric and kinematic
guantities. The motion of objects is a gravitational field of a
more complex structure is described by osculating orbital elements.
SV parameters of motion are also called orbital parameters. The
duration of the process of determining SV parameters of motion may
be many hours.

The direct determination of orbital parameters is, as a rule,
impossible. Measurements are made of the range from earth-bound
points, angular topocentric coordinates of the space vehicle,
radial and angular velocities, and the orbital parameters are /21
defined by processing measurement data in the computer.

Under determinant motion conditions, instead of a simultaneous
measurement of ranges and radial velocity constituents with re-
spect to three spaced points, we may restrict ourselves to the
measurement of ranges and the corresponding velocity constituents
2



from one ground point. In this connection, measurements from one
point are only required to be made in specified time intervals.
In order to reduce random error, the number of measurements is
usually large to reduce their influence on the results of the
measurements.

A distinctive feature of the parameters of motion, i.e., those
guantities which are the final goal of the measurement process, 1is
their constancy over the entire interval of measurement. Directly
measured quantities within this interval typically fluctuate gquite
rapidly and within wide ranges. In the rapid fluctuation of meas-
ured quantities, the measurement process appears to become more
complicated. The quality of quantities measured under similar
conditions, as a rule, is lower than the quality of measured quant-
ities which fluctuate slowly. We may theoretically free ourselves
from the rapid fluctuation of measured topocentric coordinates if
we measure the slowly fluctuating deviations of defined coordinates
from their predicted values instead of measuring rapidly fluctu-
ating instantaneous topocentric coordinates.

In orbital measurement systems, the implementation of such a
procedure may be done in practice, because the flight of objects
in outer space has a higher degree of determinacy than the motion
of terrestrial objects. By using deviation measurements in place
of the thecretical values, random errors may be leveled out.

Therefore, in determining SV parameters of motion, we may ad-
duce apriori data on the parameters of motion. These data are,
of course, not accurate enough. For that reason, apriori values
of the parameters of motion are usually represented as random
gquantities, described by fixed laws of distribution. Nonetheless,
the use of these data greatly simplifies the solution of the task
of determining the parameters of motion which, under these con-
ditions, would involve the problem of adding accuracy to the
apriori data.

In examining the overall picture of procedures for determining /22
sV parameteors of motion, a description of the entire mechanism of
determination of these constants must be used which would not re-
quire the use of rapidly fluctuating topocentric coordinates; and
in which the entire procedure of determining the orbital parameters
would constitute the one and only measuring procedure. In under-
taking to solve such a problem, of course, we must realize that
there is no basis for considering a similar unified approach as
a practically expedient procedure for processing signals to re-~
place those procedures currently in use. Moreover, the division
of the orbital determination procedure into technically uncor-
related operations is simply obligatory in the majortiy of applied
cases. In theoretical analysis, however, the "unified" approach



may prove useful, since it possesses a minimum amount of initial
restrictions and is free of any provisional agreements on the
measurement methods. These features of the given research method
enable us to rather strictly examine the question of the potential
resources of space measuring devices and a number of allied prob-
lems.

1.2, Some Data on the Fluctuation of the Parameters of Motion of
Space Vehicles

The preceeding section stated that SV parameters of motion were
considered as random guantities, invariable during the period of
observation, defined by set laws of distribution.

In reality, however, the parameters of SV motion are variable,
and in the course of time we observe secular, periocdic and random
fluctuations in these gquantities. Secular and periodic fluctuat-
ions are induced by disturbances of a regular nature. Random
fluctuations of the parameters occur under the influence of forces
which fluctuate in accordance with a random law, first among which
is the force of aerodynamic resistance.

Secular and periodic fluctuations of the parameters of motion
may serves as a source of data on the structure of the gravitat-
ional field and are taken into account in processing measurement
results. Random fluctuations are a source of error in determin-
ing orbital parameters and impose certain limitations on the meth-
od of measurement.

Therefore, in a more precise examination , SV parameters of 23
motion are random processes, whose mathematical expectation has
a secular and periodic variation. In order to properly inter-
pret measurement results, we must understand the basic statistical
characteristics of these processes and, in particular, a gquant-
ity such as the correlation interval duration. The significance
of this parameter of the random process is due to the fact that
it defines the permissible duration of the measurement process.

Some data have recently appeared in the literature [8, 9, 30]
which describe the duration of the correlation interval of SV orb-
ital parameters which are subject to the retarding action of the
terrestrial atmosphere on their motion. Unfortunately, the amount
of experimental data accumulated by research is still small and
they are only related to a limited range of conditions. These
data, nonetheless, let us form some idea on the order of magnitude
of the correlation interval. In particular, in study [30], the
results are given for orbital acceleration of the artificial Earth
satellites "Explorer I" and "Explorer IX". Orbital acceleration
implies the rate of fluctuation in the period of revolution of the
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satellite, which describes the action of aerodynamic resistance.

Table 1.1 gives orbital parameters for the Explorer I and
Explorer IX satellites and some other data.

TABLE 1.1l. DATA ON EXPLORER I AND EXPLORER IX

Parameters Explorer I Explorer IX
orbital inclination, degrees 33°,2 38°,86
height of perigee, km 357 634
height of apogee, km 2,562 2,583
eccentricity 0.141 0.121
initial period of revolution, min. 114.8 118.28
area of cross section, m? 0.26 10.8
weight, kg 14 6.63
Launch data 2/1/58 2/16/61
-msgg“ | Figures 1.1 and 1.2 give
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fluctuation from it.

momentum of revolution.

The third, aperiodic con-
stituent, obtained after sub-
traction from the autocorrelat-
ion function shown in Fig. 1.1B,
of periodic constituents, is
shown in Fig. 1.1C. It describes
the fluctuation of orbital para-
meters. It follows from Fig.
1.1C that the fluctuation cor-
relation interval comprises a
guantity somewhat less than
several days.

Cited in Fig. 1.2 are simi-
lar data obtained in processing
results of observation of Ex-
plorer IX. This satellite was
a gas—filled balloon and thus
its rotation about its axis was
not accompanied by fluctuation
in the force of resistance. How-
ever, due to the large area of
cross section and the low mass
of the satellite, its motion
was noticeably affected by the
force of light pressure, whose
fluctuation rate is shown in
Fig. 1.2A by the smoother bot-
tom curve. The choppy top curve
depicts only the change in aero-
dynamic resistance. Fig. 1.2B
gives the autocorrelation funct-
ion of fluctuations of resist-
ance, and Fig. 1.2C shows the
same autocorrelation function
after removing the constituent
having the 27-day period of

We can see from the graph that the fluctuat-

ion correlation interval for the rate of change in the period of
revolution is 2 days in the given case.

An increase in the duration of the correlation interval of
the second satellite is quite natural, since it was in a higher
orbit and owing to the greater rarefaction of the atmosphere, the
absolute quantity of the force of resistance arising in its motion

was less.
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Thus, available test data attest to the fact that for arti-
ficial satellites whose trajectories are 350 to 630 km distances
from the Earth, the correlation interval of fluctuation in atmo-
spheric resistance extends from a guantity somewhat less than one
day to a guantity equal to two days.

Unfortunately, in terms of existing data it is impossible to
form an idea on variations in the magnitude of the correlation
interval as a function of solar activity and other factors. In
article [30] it is noted that they describe the upper boundary
of values of correlation intervals. Data on the values of cor-
relation intervals situated near the lower boundary of quantities
encountered in practice are still absent from the literature.
There are also no data on correlation intervals of fluctuations in
aerodynamic resistance at altitutdes less than 350 km, and we may
only form a rather approximate idea of them.

I‘\
b
~J

The cited experimental data are directly related to the fluct-
uation rate of the satellite's period of revolution and in some
way characterize the magnitude of the correlation interval of
fluctuation in the parameters of motion, which are the research
goal of this study. It is c¢lear, to begin with, that since the
fluctuation rate of the period of revolution is a derivative of
this period, we may judge the period correlation interval in terms
of the duration of the fluctuation correlation interval and con-
sequently, the semimajor axis and eccentricity of the orbit. In
this regard, fluctuation changes of these quantities, at first
glance, may be considered stationary processes. This implies that
the fluctuation correlation function for the rate of change in the
period of revolution of an artificial Earth satellite (AES) 1is
equal to the second derivative of the correlation function
of the fluctuations of this period:

Zpo (T} = Z5(7).

In turn, as illustrated by the autocorrelation function of
exponential form, we can see that the durations of the correlation
intervals of the two simllar processes are identical. It is use-
ful to note that the exponent, as one possible version of an ap-
proximating function, is distinguished by the feature that its
second derivative, which must reflect the correlation function of
the derivative of an initial random process, reflects the bhasic
properties of the correlation function as does the function per

Se.

Therefore, we may assert that previously discussed data on the
durations of correlation intervals are related not only to fluct-
uations in orbital acceleration, but also to fluctuations in
orbital velocity, period, and the semimajor axis.



As concerns the other orbital elements, random fluctuation
in aerodynamic resistance will apparently not have a noticeable
effect on them. The only exception is orbital inclination, which
will slowly fluctuate under the influence of the force generated
by the daily rotation of the atmosphere. A satellite, entrained
by the rotating atmosphere, will not only "sense" fluctuations in
the density of the medium, but winds as well, whose velocity,
according to some data, may reach 320 km/hour. There are still
no experimental data, however, which describe the duration of the
correlation interval of orbital inclination fluctuations in the
known literature. For that reason, we shall consider that the
duration of the interval is at least 1-2 days in any case.

It is still impossible to state anything specific about the
order of magnitudes which describe: the duration of correlation
intervals of fluctuation of other orbital elements. We may only
suupose that they exceed by many orders the durations of fluct-
uation correlation intervals of the semimajor axis and orbital
inclination.

The general conclusion which ensues from the cited data con-
sists in the fact that the duration of measurement intervals of
AES orbital parameters, at altitudes of perigee from 350 to 630
km, should not exceed 1-2 days.

1.3. Signals

Reference and relayed electromagnetic fields within the area
of disposition of receiving antenna elements serve as signals in
space measuring complexes. These fields may be defined by value
sets of intensity at all points in the indicated area.

The field intensity of the reference signals, in particular,
may be represented in the following complex form:

SoﬂAo(” eXp(flut)’ \ (lo3.1)

where Ao(t) = Ko(t) exp (19¢B) is a complex amplitude; and
Xo(t) = Bg(t) exp [i ¢(t)] is a modulating function.

The notations adopted here are: k = w/uU n T wave number;
Uph - phase velocity of radiowaves; § -- initial signal
phase.

The relaved (or reflected) field may be described by the
formula :
(1.3.2)

S{f)= A4 {¢, r) exp (Ewt),
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where . ] -
' At, = At — Qr/fug.g exp(— é-2kryexpif ; j
At — 2r;«ugl) = Alt - 2r,‘ﬂugl) exp |ip (¢ — 2r,'q;grn P

r - instantaneous distance from SV to point of measurement;
Ugr -- group rate of propagation. .

Let us assume that the source of the relayed field is unique
and is integrated with the point of SV position, and the elements
of the receiving antennas discretely or continuously fill some
limiting area of space which may arbitrarily be called the volum-—
etric antenna area.

The amplitude of the assumed field, as well as the phases of /29
its carrier and modulating oscillations are a function of twice
the value of the instantaneous distance between the SV and the
point of observation, which is equal to the modulus of difference
of two radius-vectors (Fig. 1.3):

r= |rg - rgl (1.3.3)
one of which (rS) describes the instantaneous spatial position of
the 8V; the second (rE} -—- the point of observation.

The instantaneous distance from the point
of observation to the SV may alsc be represent-
ed in the following manner. Located at some
fixed point on the antenna (which may be cal-
led its center)is the origin of a topocentric
system of coordinates, the radius-vector of
the instantaneous point of the antenna is de-
noted rA(Fig. 1.4); the instantaneous distance

antenna &

between the SV and the point of observation may
also be expressed in the following formula:

Fig. 1.3. Radius r = [rg - rg, - 1,l. (1.3.4)
vectors of point ‘
of cbservation r., The source of data on parameters of motion
space vehicle Ig: may be not only the field of the reflected or
and instantaneous relayed signal. The field generated by the /30
distance between autonomous on-board transmitter may also be
SV and observation such a source; its emission is not synchron-
point r. ized with the emission of ground reference

generators (non-feedback operating mode). It
seems that in the non-feedback operating mode, the received sig-
nal is retarded with respect to the emitted signal by a period of
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time proportional to the distance between

the SV and the point of observation.
antentia

The radius-vectors of the SV and
the center of the antenna may be given
in the form of some regular functions
of some number of constant quantities
and time. These constants are para-
meters of SV orbit and the observer's
coordinates. The entire set of these
constant parameters we will call the
parameters of motion. The parameters of
motion are usually represented by multi-
dimensional vectors, whose individual
0 constituent parts describe the orbit and
the ohserver's position. We will hence-
forth denote the vector of the parameters
of motion by the letter g. Thus, the
instantaneocus distance between SV and
the observer may be presented as a
function of the parameters of motion and

Fig. l.4. Geometric
relationships in mea-
surements using a space

complex.

time:

r = r{g, t}).

These arguments indicate that amplitude, instantaneous phase,
and signal time lag, usually called the signal parameters, in
determinant motion are known regular functions of time. For this
reason, signals operating in space radiotechnical complexes may
be called signals with regularly varying parameters. The regular
nature of the relationship of signal parameters as a function of
time and the parameters of motion is a specific feature of signals
emitted from obijects travelling along determinant trajectories.

We may guite arbitrarily divide signal parameters into in-
formative and non-informative. Informative parameters are those
which are directly utilized to obtain information on the parameters
of motion; non-informative parameters are those which are not di-
rectly utilized to obtain similar information.

The informative parameters may be such as instantaneous phase,
frequency, time lag, and sometimes even signal amplitude.

Non-informative parameters are either constants, regularly
variable, or randomly variable guantities, whose statistical pro-
perties are known. The initial signal phase is usually such a /31
parameter. The same information contained in amplitude is often
not utilized.

10



. Several signal models will be discussed subseguently which
differ in non-informative parameter characteristics.

To begin with, we must examine signals with regularly variable
amplitude and known initial phase. These type of signals, as we
know, are not realized in space measuring complexes, but a signal
model having a known initial phase we shall include in those models
discussed, since in some instances the properties of actual signals
may be profitably compared with signal properties of this hypo-
thetical model. 8ignals having a known initial phase will be cal-
led first model signals.

In addition to signals having a known initial phase, we will
also examine isolated signals having an initial phase whose magni-
tude is constant for the entire existence of the signal and random
in transition from one signal realization to another. The ampli~
tude of such signals, which we will call second model signals,
vary in accordance with a regular law in correspondence with a
change in distance between the SV and the observer. The initial
phase is uniformly distributed from 0 to 2.

The third model corresponds to isolated signals having a
random initial phase and amplitude. The law of distribution of the
initial phase, as before, is assumed to be uniform, and amplitude
conforms to Rayleigh's law of distribution.

It is also expedient to émphasize sequences of signals having
random initial phases and amplitudes. Such sequences shall be
called fourth model signals. We will ultimately examine continuous
signals having slowly fluctuating initial phase and amplitude.

Generally speaking, the electromagnetic field used in space
measuring complexes is a complex wave process having a fluctuating
phase and amplitude. The fluctuations of parameters of this pro-
cess are, on one hand, the result of fluctuation effects within the
generator (thermal and shot noise, "technical" fluctuations) and
on the other hand, the result of random heterogeneity of the medium
in which this process is propagated. 1In this regard, fluctuations
generated by various physical factors differ in their statistical
properties. Each mechanism has an inherent time and space correl- /32
ation interval, the simple separation of effects due to different
mechanisms not always being possible: these processes do not al-
ways conform to the principle of superposition. But, taking into
account the large duration of the observation interval and the
small specific gravity of rapid fluctuations of small intensity,
we may be limited to the assumption that signal amplitude and phase
fluctuate quite slowly. They remain constant during the correlation
interval and fluctuate in conformity to a random law during trans-

. ition from one correlation interval to another. In relation to
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experimental data related to modern, high-stability quartz fre-
guency standards used in the AES in conjunction with or without
atomic standards, let us assume that the interval of the time
correlation of phase fluctuations may reach several seconds and
minutes, while the interval of space correlation -- hundreds of
thousands and millions of kilometers.

It is apparent, in this regard, that continuous signals hav-
ing slowly fluctuating amplitude and phase may, at first glance,
be represented as a sequence of pulses adjacent to one another,
which have random phase and amplitudes. In other words, an analysis
of processes in systems having such signals, which we shall call
fifth model signals, may reduce to the analysis of processes in
systems having fourth model signals.

The received signal in space radiotechnical complexes may
thus be represented with the aid of the formula

s = s{alr{q, £}1, B, t }, (1.3.5)

where o -- the vector of regularly variable signal parameters;
B ~-- the vector of signal parameters which are random quantities
or random processes; g -- the vector of definable parameters of
motion.

In some cases, the parameters of motion must be subclassified
as definable and non-definable. For example, in navigation pro-
blems for ground objects according to AES, the definable parameters
are the parameters of motion of the observer situated on the Earth
or near the Earth. The orbital elements are considered given in
this regard. 1In orbital measurements we are given the coordinates
of ground points and the orbital parameters are defined. Thus,
generally the vector of the parameters of motion should be sub-
divided into the vector of definable parameters g and the vector
of non-definable parameters gq_. The signal at the point of re- /33
ception is therefore written: -

s = s{alriqg, qP, t)1, B, t} . (1.3.6)
We should add that, in general, the signal field is polar-
ized and it must therefore be represented by three components of
the corresponding vectors. However to simplify the problem, let
us confine ourselves to an examination of only one component of
the polarized field, assuming that the type of polarization is
taken into account in the design of antennas.

12



1.4, Brief Characterization of the Field of Random Interference

The influence of diverse natural interferences on the radio
channels of space measuring complexes may be reduced to the in-
fluence of random vectorial electromagnetic fields on the element-
ary antennas of the complexes. The antennas, in general, are com—
Pletely or partially polarized, heterogeneous, anisotropic, and
non-stationary. Of the greatest practical interest are the random
fields formed as a result of superposition of a great number of
fluctuation fields created by sets of more or less uniformly con-
centrated in space sources of noise emission. These fields con-
form to the normal law of distribution, represented by comparative-
ly simple analytic relationships, which are extremely suitable for
use ineonducting diverse studies [2].

The ideas on random electromagnetic fields were formulated
as natural generalizations of ideas on random processes which in-
clude functions of time, whose instantaneous values are random
quantities which conform to specific laws of distribution. How-
ever, in identifying a random process with a specific set of random
gquantities, we must take into account that this set is not equi-~
valent to a simple sum of individual random quantities and repre-
sents a much more complicated phenomenon. The particularity of
a random process is that between the elements of the set of random
quantities into which it may be factored, there may exist a specif-
ic interrelationship. For that reason, a random process is char-
acterized by a multidimensional law of probability distribution,
which generally is not divided into parts related to separate /34
random quantities, and breaks down into a large number of one-di-
mensional laws only if there is no relationship between its in-
stantaneous values. Moreover, random interference with which we
must deal in radio technology is continuous in nature and, strict-
ly speaking, is identical to an infinite set of random gquantities.
For this reason, the distributive law of interference is represent-
ed not by a function, but by a functional of the probability den-

sity [20].

The random electromagnetic field is a set of vectorial ran-
dom processes effective in some area of space or, in other words,
a vectorial random process, whose instantaneous value is not just
a function of time, but also a function of the spatial coordinates
of the point of observation. It is identical to three scalar ran-
dom fields, each of which is described by the corresponding func-
tional of the probability density. In this regard, the separation
of the distributive law of random field realizations into distrib-
utive laws of random processes at individual points in space is
likewise impossible. This division is only possible in the absence
of a correlative relationship between the corresponding random

processes.
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Analytic expressions for the functionals of the probability
density of scalar components of the random vectorial field of the
normal type may be derived from the expression for the function of
distribution of discrete values of a normal random process, which
has the following form:

o] =

‘@ (n,) = '[nT_B;‘ﬂlU (1.4.1)

.
(Ver v aetB, " -

where n ~- is a k-dimensional vector-column, whose components are
elements of random process selection, whose volume is equal to

k; nT -- the transposed vector-column; B -- the correlation matrix
of interference, which is of square form k x k; det By -- the mat-
rix determinant. .

By introducing the matrix C, the inverse to the correlation
matrix Bp, the sign of the exponent of formula (1.4.1) may be ,
written in the form

l ] l . &k h
——0Bta=— Larene — Ly, o |
'.ﬁ_z | 2 2LZﬂ.JLjCU, (1.4.2)
' =l
where, by definition, CBp = 1 -- a unit matrix which is eguivalent
to the relationship
“_k"' ..
Xcmjbr’m S {1l where 1= 7
10 where i # 3.
=1 e
Let us compose an expression for the functional of the pro- /35

bability density of a normal random process. The unknown funct-
ional is derived from (1.4.1), if the number of divisions of the
segment of time of existence of noise is to approach infinity
(and thus, if the time interval between divisions approaches

Zero):

win (-t)’] = iim w| n,] .
B (1.4.3)

With an increase in the number of divisions of the area of fluc-
tuation of the argument, the double summation (1.4.2) in the ex-
ponent sign of (1.4.l1) approaches the double integral
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where A is the distance, approaching zero, between two values of
the argument. This equality is valid if in the limiting process
A + 0 the relationship -*

] 'J"':::fl[.ti’ ti'_),ﬂ_%’:-—‘ : (1.4.5)

is satisfied; it may be written as

) [
df“c-——adt,dti—l

oxr as.

a = dicjdt,dt,,

where cij -- an element in matrix C, inverse to the correlation

matrix., In other words, if we differentiate the random process
n{t), the infinite double summation may be written as a double
Stieltjes integral :

° L rr .
: I vy 1
kﬁchgféﬂﬁw):—zgjﬂMM@W%,mﬂ

i==l je-i / [V

s

‘ | rr /
= £ (E) adt, dt 7
- 2 H”“ Jadtidty (1.4.6)
- - b i /
the function a(t,, t,)} being connected to the correlation coef- /36
. 1 27, - & £330
ficient by the integral equation

el =
j'b’{tl, t)alt,, £,)dt =it —£.), ; (1.4.7)
. 0

i

which is an analog of the eguation

'CQ:J._V/ (1.4.8)

-

After introducing the functional

' "'"_(te)a(t., t:)dt, =z(t‘),7 (1.4.9)
g '
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the limit of quadratic form in the exponent of the normal dis-
tributive law may be rewritten as follows:

}II-EI(I“( ZL””’C”) ——-j‘n(t)w f)dt, (1.4.10)

Iel;ml

e b

-—

where z(t) is defined by equation (1.4.9), which is equivalent to
the condition

b (1.4.11)

N
n{t) = S’B(t, ) z{uw)du }
which is easy to verify by multiplying eguation (1.4.7) by n(t )
and integrating both parts from 0 to T.

When a number of divisions of the range of existence of argu-
ments approaches infinity, the coefficient before the exponent
also approaches infinity, but this does not cause any difficulties
since in the problems under:discussion we are using a ratio of
functionals of probability densities which remains finite.

The expression for the functional of the probability density
of a stationary uncorrelated random process ("white" noise) is
somewhat simplified. Since in this regard :

Ny ., '
5 .u(t}l——‘ tﬂ (1.4.12)

where Ny -- the spectral density of noise, then z{t) = n(t) and
T
l L]

"““(‘“_22”“) _E.Erlg(t)df'/ . (1.4.13)

) B(tl [ tg)':

3

1ot jel

Therefore, for uncorrelated noises, the integral in the expon- /37
ential sign .expresses the energy of the fluctuation process.

As was noted, a random process is a function of a point in
a four-dimensional time-space manifold. This means that the pro-
bability density of a discrete sample of values of the normal
field 1is represented by a formula analogous to formula {(1.4.1):

ﬁ;, ,]_-Kexp{~—A-[nTB ‘n[]] (1.4.14)
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but the volume of the sample now increases substantially. The
sample is formed, in this case, not only as a result of the di-
vision of effect time of interference on segments of At, but also
as a result of division of the spatial region of the field setting
into several elementary volumes of AV. If the number of such
elementary volumes is equal to &, the volume of the sample will.
constitute m = kL. If the volume sample approaches infinity, we
will switch from the distributive function of (1.4.14) to the
functional distributive density of a large number of random field
realizations. This limiting process is similar to the one given
in formula (1.4.4), but now in place of the function n{t)dt, we
must use the function n((t, r) dtdvV and integrate not only in terms
of time, but also in terms of the volume in which the receiving
antennas are arranged. It is likewise clear that instead of the
time correlation coefficient a(tl, t,) we must use the coefficient
of space-time correlation a(tl, t2; £y r2). As a result, we
arrive at the functional

: T
1 ' \
;_?S\j‘n(t, r)z (¢, rydtdV, \ {1.4.15)

)]
Vv o .

whose subintegral coefficient z(t,r) satisfies the Fredholm
equation - S e .

oL = ‘ [B(f. r.< g)2(tp) did V., -

' G v 7 . (1.4.16)

Ultimately, for the functional of the probability density of ,
a normal random electromagnetic field we derive the relationship

Cawfny, ] = Kexp

a
o f
_Ejj‘u(z, nz(t, r)dtdlf.’ (1.4.17)
[T .

which is extremely general in nature and is suited for describing /38
both homogeneous stationary and isotropic, as well as heterogen-
eous, nonstationary, and anisotropic random fields.

It should be mentioned, however, that natural random electro-
magnetic fields, especially fields cof thermal noise, may at first
glance be considered as stationary homogeneous and isotropic fields.
In addition, the width of the fluctuation spectrum usually exceeds
the width of the signal spectrum, making it possible to approxim-
ate the spectrum of actual interference, which is a function of
frequency as interference having a uniform spectrum ("white"
noise), i.e., interference whose time correlation coefficient is

17



represented by a Dirac delta function. Finally, the dimension of
the space correlation interval of thermal noises does not exceed
the magnitude of wave length order, allowing us to approximate
the function of the space correlation by a Dirac delta function
as well. Therefore, with the foregoing assumptions

Bit,r, gp)——— a(t_._-) (£ —p, (1.4.18)

El

! Z{t, 1)y = Fé-zz(t, r).

*

Consequently, the functional of the probability density of a homo-
geneous statlonary delta-correlated random field is represented by
the formula

(1.4.19)

No

p e ;o
:.\ w{n, r] = K exp 1— 1 S g‘ nQ‘ (t, 1) dtdV

Vo

1
f

where N, -- specific spectral density of fluctuations, which is
equal tO the energy scattered in an isolated volume per unit time.
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Chapter 2-

EVALUATION OF PARAMETERS OF MOTION AND THE OPTIMUM FILTRATION
OF SIGNALS HAVING REGULARLY VARIABLE PARAMETERS

2.1. Methods of Direct Evaluation of Parameters of Motion in
Terms of the Field of the Received Signal

The research methods may be characterized in the following
manner.

To signal s, carrying information about the motion of a SV
or terrestrial (near-Earth) observer are additively superimposed
fluctuation interferences n. At the reception point, the effect-
ive summary signal is

y:s'.hn._f (2.1.1)

Here s = s(t, r), n = n(t, r), y = y{t, r) -- functions of co-
ordinates and time which may be considered multidimensicnal vec-
tors, whose components are expansion terms of these functions in-
to a series in conformity to Kotel'nikov's theorem.

As was nhoted earlietr, .the signal is a determinant or guasi-
determinant electromagnetic field having randem and regularly
variable parameters, resulting from complex nonlinear relation-
ships having specific parameters of motion:

s = s{alr(q, dor B)1. B, t} . (2.1.2)
Interference which distorts the signal is a random, stationary
electromagnetic field.

The problem is, with respect to an additive mixture of noise
and signal in a given area of space, to define the magnitude of
the vector of definable parameters g.

The primary distinctive feature of this problem is that it is
not the parameters of the signal which function as directly defin-~
able guantities, but the parameters of motion, i.e., geometric
and kinematic quantities which describe the spatial position and
motion of space or terrestrial object. As we know, the theory of

evaluations in radar technology is usually applied in evaluating /40

signal parameters; the process of defining the parameters of mot-
ion extends beyond the framework of the evaluative process and

* \ig seen as a problem of secondary signal processing (information).
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Another substantial feature of the problem is that signals
and noise are examined for an interval of time in which there is
significant fluctuation in the juxtaposition of emission source and
receiver., Moreover, a particularity of research is the use of
receiving systems which not only consist of discrete point anten-
nas, but also of a rather large number of elements which are dis-
cretely or continucusly filling a specific area of space.

Under these conditions, it would appear that it is objectively
possible to directly define the entire set of parameters which de-
scribe the spatial position and motion of a 8V or ground observer.

As we can see from the formulation of the problem, it is
statistical in nature and may be reduced to evaluating the mag-
nitude of the parameters of the resulting distributive law of
received signals, taken as a multidimensional random quantitiy.
The received signal y is indeed a known function of several ran-
dom vectors 4, 4., B, n, whose distributive laws are known. Con-
sequently, we ma? compute the resulting distributive law of the
vector of y, as well as the conventicnal distributive laws of the
type w (yv/q), in terms of which we may find the aposteriori dis-
tributive law of probabilities w (g/v).

Having this law at our disposal, we may make a specific eval-
unation of the parameter g. Obviously, the most preferable are
optimum evaluations, as which we customarily understand those
evaluatigns which ensure minimizing of the mean risk (or mean
losses) in defining error cost, i.e., evaluations which satisfy
the condition

-]

- - S
. ”(q, q) w(q, q) a’qa’c?:mi

0, (2.1.3)
where g and § -- vectors of definable parameters of motion and
its evaluation; (g, §) -- cost of errors (function of losses);
w (g, q) -- combined probability density of quantities g and g.

We shall limit ourselves to an examination of optimum eval-
vations of the Bayes type, since in processing metric data in
most all-purpose and specialized space radar complexes there is
more or less accurate apriori information on the parameters of
motion. The exception are detection complexes, which we will
not discuss at this point.

We know that regardless of the sampling of error cost, the
evaluative problem comes down to the definition of the aposteriori
probability density of the known parameter. In defining the co-
ordinates of the center of gravity of an aposteriori distribution,
in particular, we obtain an optimum evaluation corresponding to

20
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the loss function squared

M @ i(ﬂf’_%)?; /

‘The coordinates of the apostericori probability density maxi-
mum correspond to the loss function of the form

Mg, §)=1—3q,9), /

Where § -- the delta function.

In turn, the aposteriori probability density of the unknown
vector of the parameters may be represented as a ‘productzof -~
the probability density of apriori data errors w(gq) and the ratlo
probability of the selection of the received signal and noise
mixture 2(y/q):

=K w ) B ¢
w(y/q) _ @(q) Wq’/ : (2.1.4)

where, as we know, the ratio of sampling probability densities is
recorded in the presence of a signal and in its absence. Taking
into account the presence of undefinable parameters of motion and
non-informative signal parameters, we may write the following
expression for the ratioc of probability:

oo

[ w0y 4. qu,pro(a,)w@) dad

o Wyie=== ) - : ) (2.1.5)

The constant coefficient K in formula (2.1l.4) serves to norm-—
alize the aposteriori dlstrlbutlve den51ty Tt is equal to

= — w(r) . 1
{ wl@)iyiarda / (2.1.6)

Beneath" the dinteygral+sign in the&. ratlo of probability ‘appears /42
the conventional probability distribution density of sample sel-
ection ¥, i.e., the distribution density of a sampling with several
fixed values of the parameters q, gp, and B. It appears that with
fixed values of these parameters, the probability distribution
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density of the sampling will coincide with the probability density
of interference and may be expressed by the equation

A
_ - = - . [

’ "u!‘(}’,.q, Qu a)Zﬁ'n [}' «—‘s(q. Qn» B)]"{ (2-1.7)

where w_(n) -- the probability distribution density of interfer-
ence.

In turn, the field realization probability density which ‘ap-
pears in the denominator of the formula for the ratio of pro-
bability, in the absence of a signal, is expressed as

)

anYQ?WJyff (2.1.8)

Ultimately, the formula for.the ratio of probability acquires
the following form:

e . e e me s amme—m— - -

~.

[faly—sta, a,. ) w(an) w() dq, d8 N

Hyiq)= == - . (2.1.9)

Lo
s | e

If the vector of the parameters of motion does not contain
known undefinable parameters gp, this expression is simplified
and acquires the form

t e - B St

{ waly —sta, Bwds
Hyjg)= =

(2.1.10)

@)

Therefore, having at our disposal analytic expressions for
the signal and for the function or functional of the probability
density of interference, we may define the probability density
of the sampling or realization of the field of signal-and-inter-
ference: in the presence of apriori data on the parameters of
motion, this lets us derive the conventional distribution density
of the vector of values of unknown parameters of motion and com-
pose an optimum evaluation of them.

In summarizing, we can observe that we have essentially re-
duced the task of defining the parameters of motion in space meas-
uring complexes to the generalized task of filtering radio signals.
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In this problem, the measuring means. of the complexes axe seen

as a unified space-time filter, functioning in the interval of /43
constancy of definable parameters of motion and shaping the eval-
uation of the magnitudes of these parameters which is optimum

from the standpoint of the defined criteria.

"A feature of generalized space~time filters, among which
may be related space, rocket, and other radio-technical complexes,
is the complex nature of the relationship between definable para-
meters of motion and field parameters of the signal, which may be
nonlinear and variable in time.

2.2. Ratio of Probability

The ratio of probability is the most substantial element of
the probability density of a received mixture of signal and noise.
The formula relationships which describe the ratio of probability
for different signal models may be derived by substituting in form- =«
ula (2.1.9) analytic expressions for signals and probability den-
sities of interference, taking account of the distributive law of
vectors of non-informative parameters B and undefinable parameters
of motion, gp. To simplify the problem, we will limit ourselves
to the case where there are no unknown undefinable parameters,
some parameters are known, and all unknowns enter into the cate-
gory of definable quantities. In this respect, we will calculate
ratios of probability only for an isoclated signal having random
initial phase, uniformly distributed in the interval from 0 to
27+ wl(p) = 1/21m .

Assuming that only initial phase B 1s related to the number
of non-informative parameters, from formula (2.1.10) for the ratio
of probability we yield the following equation:

2

5 .
Ry .
Uyl =e v _Q_ﬂ,.fem[%{ fy(t, r)s(t, r, B)dth]d,’ﬂ,l (2.2.1)

i Fi] |
- .V "} !

where
E fﬂw s¥(t, r, B)dtdvk ' ' (2.2.2)

-- signal energy effective in volume V.

The ratio of probability is expressed with the aid of the
integral from the exponential ‘function, whose argument is the
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‘product . of some constant quantity X. the space-time integral’
takenrih. terms of four-dimensionsal volume

z={[we, s r, B}dva’f-\ (2.2.3)
T

In carrying out calculations, we will be using a complex
form for writing the signal, interference, and the mixture of
signal and interference:

. 8(t, ry=A(¢t, r)expli(wt @)}, (2.2.4)

- —

|
!

nft, r)Azbf*ir {, f‘)—e_xp (_iwt}," (2.2.5)
yU,r)ﬁ:VU,riiiiggg] (2.2.6)

L T 3 e e

where i(t,r ) = A exp (- ikr) = A(t, r) exp ,i¢(t, r) exp (- ikr};
N{t, r) = N(t,r) exp[i¢i(t, r)y}:; ¥(t, r) = A(t, riexp 1 B + N(t,r).

The use of complex expressions ' permits us to give integral
{2.2.3) the following form:

zzfi Y, rys(t, r)dv dt :% Re
¥ .

{ [§ve, rexpondct, x|

rv

‘\\Xexpﬁwmﬂ-@idth+ijU,nexmﬁn)Aﬂgr)x
. a4 '

N X exp [— i(wt +B)] d Vadt } / (2.2.7)

Complex amplitudes A and Y fluctuate within a four-dimensional
volume TV rather slowly, and the duration of observations greatly
exceeds the magnitude of the period of high-frequency oscillation;
therefore, below the sign of the time integral of the first com-
ponent of summation (2.2.7) will be found a rapid-oscillation
function approaching zero. Consequently,

zz%gé {{y Asexp(—ipyavar.§

T

(2.2.8)
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By introducing the notations /45

L]

I _
?E Y(t, r)A¥N¢, rydVdyl, (2.2.9)
P
cos =Re{[V (¢, A*(t, navariz , (2.2.10)
| qme—lmHH nA* (¢, rydVdiiZ, (2.2.11)
= - B V ’ - . e e e m——

the integral of {(2.2.3) may be given the following form: z =
= Zcos(f - 8).

We ultimately derive the following relationship for the ratio
of probability:

’ ’ . B 2=
N 07 -
‘ [(WQ)—E;B i ‘(exp[vncos(fi_‘ﬁ‘) ]d[&:
. i) - ) .
=e_N°jo( 2Z Y (2.2.12)
_NU
where I () -- a modified zero-order Bessel function. The inte-
gral
1 ) .
z=—|{{ v, nare, navae ' ,
2 ”, _ (2.2.13)

is called the space-time correlation integral or the intercorrel-
ation function of the signal field and the field of the received
mixture of signal and noise.

Therefore, the procedure for deriving the optimum evaluation
of parameters of motion reduces to a definition of the space-time
correlation integral Z, and optimum filtration of the signal in-
cludes transmitting the received signal and noise mixture through
a set of correlation devices; as a reference signal, signals free
from interference are fed in (these signals are effective in the
corresponding points in space); and the summing of output effects
of all correlation devices located within the region V. In practice,

25



however, we can not have at our disposal signals free of inter-
ference at the points of reception, because the formation of such
signals would require the disposition of precise values for the /46
parameters of motion, whose definition is the end purpose of the
measurements. As a consequence, there is a lack of precise apri-
ori information about the parameters of motion on the receiving
end, and only this information may actually be utilized to form
the reference signal. Consequently, the practical meaning may
only gained by using reference signals formed on the basis of
apriori data and only with some degree of accuracy corresponding
to the actually effective signal. Therefore, the space-time
correlation integral will imply

Vv, nai, ryavat|, |

(s

N

[
) (2.2.14)

in which appears a reference signal A_(t, r_ ), formed in terms of
apriori data about the parameters of motion.

Integral (2.2.14) is similar in form to the correlation inte-
gral which describes the procedure of optimum filtration of radar
signals [27]. Between these integrals, however, there is a very
great distinction. The primary distinction is due to the features
of the received signal and includes the fact that if a signal hav-—
ing constant parameters is used as the reference signal, in this
case we would use a signal having regularly variable parameters,
formed at reception points in terms of apriori data as the re-~
ference signal.

Ancther distinctive feature of the space-time correlation
integral is that signal field strength does not appear in it, but
the signal's volumetric densgity does.

Thus, the definition of the ratio of probability for the field
of an isolated signal having a constant random phase {in terms of
the earlier given classification -- a second model signal) reduces
to the definition of the correlation integral equal to the modulus
of a quadruple integral from the product of the densities of re-
ference signal and recelved signal and noise mixture.

It follows from this analysis that for an isolated signal
having a zero initial phase (i.e., for a first model signal),
the ratio of probability is expressed by the formula

.f L(yia) = exp('—'-'E!NA) exp (27,/Ny), ] (2.2.15)
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where

i
2 v - % (2.2.16)

These relationships are derived from relationships (2.2.1) and /47
(2.2.8), if an initial signal phase B equal to zero is placed in
them.

Let us now cite expressions for the ratio of probability of
third and fourth model signals. From the formal standpoint, the
deduction of these relationships coincides with the deduction of
formulas for the corresponding models of radar signals [27], and
thus there is no need to derive it.

g For isolated signals having random phase and amplitude, the
ratio of probability-has the form

l(y'q)=

(2.2.17)

N, ( I s )
exp f —- .
fE'-‘]"NQ N(]'.'E"l'—NQ,

We have to note that here the initial signal phase is assumed
to be uniformly distributed from 0 to 2w, amplitude fluctuates
in conformity to some regular law, and its maximum value is ran-
dom and is distributed in conformity to the Rayleigh law; Z and
E are given by formulas (2.2.14) and (2.2.2), respectively.

Finally, for a signal having independently fluctuating amp-~
litude and phase (fourth model signal), the ratio of probability
is expressed by the formula

22
e N"' exp — & ) (2.2-18)
Ity( q) - [;lx-".iEk + NU NO ‘Ek +N0
where o
Z, :—;- H Y, NA (L, rn)dthl;
kt
E = gjﬁﬁ rdVvdt= ;SSAAWHWI
Tk -- the duration of the correlation interval of fluctuations
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in amplitude and phase; k -- the number of correlation intervals
falling within the limits of the measurement interval.

Generally speaking, integration in terms of volume should be
done within the area of spatial correlation of fluctuations in
amplitude and phase, but we have done it in terms of the entire
area in which the elements of the receiving antennas of the
space radar complex V are located, because the dimensions of the
area of space correlation usually exceed the dimensions of the
area of arrangement of the complex's antennas.

Tn summation, we may note that the definition of the ratio of /48
probability reduces to the definition of the space-time correlation
integral of the form (2.2.14) or (2.2.16) .

The correlation integral of any form may be written as a sum
of two components: -

2=\ 7 J‘:-H
| | 7, i-‘ , (2.2.19)

one of which describes the result of interaction of the received
and reference signals, the other -- the result of interaction of
the reference signal and interference. The first component i

| L pp. ., -
.Zs=—2"”AAaa’wt/

TV

is called the autocorrelation function of the signal (AFS): the
second component

s ‘ ] . _.:-...*. fj
'Z"z? [‘j‘ NAadth !:
. o, o (r

g }

-- the intercérrelation function of the reference signal and in-
terference. With a strong signal, the second component is small
vis-a-vis the first. Therefore,

zZ=|Zz,| =%m",4
. - - .or TV

and the properties of the correlation integral may be judged in
terms of the properties of the autocorrelation function of the
signal of (2.2.20).

(¢, r) Au(t, r,,)dthl, l (2.2.20)
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2.3. Properties of the Autocorrelation Function of a Signal
Having Regularly Variable Parameters

The autocorrelation function of a signal having regularly vari-
able parameters does not differ substantiglly from an autocorrel-
ation function of a signal having constant parameters. We shall
enumerate the properties which a common for autocorrelation funct-
ions of both types. *

1. The autocorrelation function is a function of apriori
values of the parameters of motion.

In expanding the expression for the instantaneous distance /49

between the point of observation and the SV, we yield from formula
(2.2.20) the following

v oo

IR AR TN [t“ "Q_Jrs (@, 1) —
| —
B \gg .

1
2(q,) = —
(q 2)L

g..mg, 0 ralag 0

(
i

T {9, ’)] expl2k | rg (A5,. ) —re(qe,, ¢ | |d Ve | . (2.3.1)
. . - o . Cem

This formula is an analytic expression of the functional re-

lationship between values of AFS and apriori values of the para-

meters of motion q__, g ._. The relationship between these gquan-
sa ea

tities is more complex in nature than the relationship between
AFS values of a signal having constant parameters and the para-
meters of the reference signal. Below the integral sign stands
the .product:’ of two time functions, whose parameters (amplitude
and phase) are variable and fluctuate with the passage of time.
The first is the signal received by the observe (the observer's
position is described by the vectorial quantity qe) from the SV,

whose parameters of motion are dg {all parameters dg and q, Or some

of them are unknown parameters of motion). Second, or reference,
signal is shaped at the receiving point in terms of apriori data
on the parameters of SV motion. TIts parameters fluctuate with
time in accordance with the law of fluctuation of distance from
observer to SV which corresponds to apriori data on the orbit and
position of the observer.

Formula (2.3.1) for the autocorrelation function of a signal
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having regularly variable parameters may be written in a somewhat
modified form. Using the notations

roldg, t) = rolq., t) = r,

roldg,r t) = r(q_ , ¢t} =1,

|
o

r=r, + Ar, t - 2r/Ugr

[
w
o

and dropping a line in the integration ﬁariable, we derive

- Z{a,) :%j S fﬁ(t) A (H— -(‘?L) exp (—i2kAr) dVd , ‘

vy e/ - A

(2.3.2)

Henceforth, the limits of inte-
gration will be denoted as before by
the symbols VT, bearing in mind that
integration is implemented within the
limits of the space-time area of ex-
istence of the received signal. The
spatial position of this area is de-
fined by the position of the receiving
antennas; the time position -- cor-
responds to the moments of formation
and termination of signal activity at
points of location corresponding to
elements of the antenna systems.

Fig. 2.1. Relations _ In preceeding formulas for auto-
between geometric quan- correlation functions, integration was
tities used in defin- carried out with respect to time and
ing the correlation space within the area occupied by the
integral. receiving antenna, while r implied the

instantaneous distance of the receiv-
ing antenna volume from the emitter. If we adopt some point C,
removed from the source by the distance r_ as the origin of the
system of coordinates in which the area of integration is given
(Fig. 2.1), we may adopt as the integration variable the quantity
Lo which is associated with the quantities r, and r by the equat-

ion
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In the expression for the complex amplitude of the reference
signal there appears the instantaneous distance of the element of
an imaginary receiving antenna volume, located at a point having
apriori coordinate valuesy " If-this point is designated with the
letter cz, and the corresponding vector is given the index a,
the apriori wvalue of the instantaneous range in the expression
~for the complex amplitude of the reference signal may be written /51

as

rY =r - X, .
a ca Aa

Therefore, the expression for the autocorrelation function of
the signal may be brought to the form

Z=“L¢{5ﬁ{t_u_21nd—rAl ]\
2 D ’
. I8 - gr . .

('

"
b 74"* {t . 2| Ty Tag |

> Ag ] exp (- 2ikar) dVdiJ ,
L " . ﬂgr 1

L | (2.3.3)

where A(x) = A(x) exp [i (xX)]; r -- the different in ranges from
source to elementary volumes, one of whose coordinates corresponds
to the actual position of some elementary wvolume of the receiving
antenna; the coordinates of the other -- to the position which
this volume would occupy if the antenna were placed in space in
conformity to apriori data, i.e., if the antenna center were
placed where it is situated apriori, and the "body" of the antenna
were turns about three mutually perpendicular axes ‘at several
angles —- likewise in conformity to apriori information. In the
general case, differences in range between the mentioned element-
ary volumes may fluctuate in the course of time due to the motion
of the source. The remaining notations are given by the formulas

rc = rce(qe} - rS(qS)'

Tea = rcea(qea) - rsa(qsa)'

The letters g_ and gq_, as before, denote the parameters of motion

of the observé and the space vehicle, and the vectors re and ry

describe the instantaneous position of the observer and 8V,

The integration in formula (2.3.2) is done with respect to
a four-dimensional space-time area, within the limits of which
there appears beneath the integral sign the:product W of electro-
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magnetic fields which differs from zero. One of these fields' --
the field established by all elements of the anténna devices of
the space complex. Because the ovaluation of the parameters of
motion, in terms of the problem's meaning, is not done over the

entire field generated by the source but only for that part of it

which is perceived by the receiving antennas, the amplitude of
the unused electromagnetic field is considered to be zero at all
points situated outside the receiving antennas.

The second factor of the subintegral ekpression is the large
number of reference signals shaped at the reception point, Whose
parameters generally differ from the parameters of the received

signals due to the distinction in apriori and actual values of sV

coordinates and those of the reception point; as wel} as due to
time measurement errors due to the misalignment of time scales
at the emission and reception points.

In discussing one-dimensional problems of "time" filtration
of signals, the location of the assigned field of the reference
signal on the time scale, as we know, is reflected with a shift
with respect to the area of existence of thé received signal.

In the case of space-time filtration, with a strictly formal ap-

proach, we should take into account not only the time, but almatﬁé

space shift in the area of assignment of the large number of re-
ference signals. In a physically realized filter, however, the
assigned area of the large number of reference signals coincides
with the assigned area of the large number of received signals,
because the reference signals “shéuld be shaped at all reception
points. Consequently, the space assignment areas of received and
reference signals are identical and their position coincides with
the position of the area of location of the elements of the an-
tenna devices. Therefore, the are of space, within whose limits
integration is done, coincides with the area of location of ele-
ments of the antenna devices. Integration with respect to time
will likewise be done within the limits of the existence time of
the received signal. ’

' &
2. The autocorrelation function is a function of definable
corrections for apriori values of the parameters of motion.

With a small difference between the apriori and actual data,
i.e., with a fairly high accuracy of apriori data, it is possible
to use a linear approximation of instantaneous range to the SV:

N r( JT ’ ) _ B IE! -
q§ 9%, fy=r, (Q‘Sé, Gs. {) 'f"} or oq,,
e P

where ¢ ='{Aqei, coer Ag_gs Aqs(i YA Aqsm} -— the dif-
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ference between actual and apriori values of the parameters of
motion, which will likewise be called corrections for apriori
values of these parameters, and the derivatives dr/dql taken at

points corresponding to their apriori values.

Allowing for the latter relationship, the autocorrelation
function of (2.3.2) may be written as

/“qy“*Jjj‘ (#+fifla;a,)y

A(f‘l exp { JQkL — Aq,) d Vit

(2.3.4)

Therefore, the ACF of the signal having regularly variable
parameters is a function of the vector of corrections for the
parameters of motion, whose dimension is defined by the nature of
the problem in question.

3. The maximum value of the autocorrelation function is
equal to the signal energy detected in the limits of volume V.
It is attained with the complete coincidence of apriori values of
the parameters of motion with their actual values. In propofrtion
to the divergence of apriori and actual values of the parameters
of motion, the magnitude of the ACF decreases.

It appears that the more accurate the apriori information is,
the less difference there is between the received and reference
signal and the greater the ocutput effect of the §pace time filter
approaches the magnitude

P 1 N |
.,,.x__—gl”mr, ry A%, r)a'wt‘ s

equal to the sum energy of the signal perceived within the vol-
ume occupied by all elements of the antenna systems of the com-
plex. Inversely, the greater the difference between the received
and reference signals, the less the correlation integral. There-
fore, by the magnitude of the output effect of the space-time fil-
ter we may Jjudge the degree of distinction between apriori and

- »
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actual values of the parameters of motion, i.e., the magnitude
of the actual values of these parameters.

By means of varying the apriori values of the parameters of /54
motion, it is possible to discover the value of these parameters
at which the autocorrelation function of the signal and thus,
the correlation integral too achieve their maximum value. It ap-
pears that the maximum ACF will be attained at values of apriori
data equal to the actual values of the parameters of motion or, in
any event, at values comparatively close to them.

Therefore, the optimum procedure for defining the parameters
of motion may be given in the following manner. To discover the
optimum evaluation of the parameters of motion, we must compute the
correlation integral (2.2.13), using existing apriori values of
the unknown parameters. Then, by wvarying the apriori values of
the parameters of motion, we must seek the values of apriori data
which ensure maximizing of the correlation integral. Values of
the parameters of motion found in this way will be desired eval-~
uations.

The divergence of apriori g_ and actual g reduces 2 as comﬁﬁji
pared to Zpax. It is primarily “due to the effect of the ex-

ponential factor of the subintegral expression. Indeed, if even
the argument of the exponent is similar atvail points in the area
of integration, then for all kAr # 2 nm , this factor will be less
than its maximum value, which is equal to one. In the overwhelm-
ing majority of cases, however, the difference in ranges Ar is not
identical for different points of the antenna and does ncot remain
constant during signal reception. This all brings about a re-
duction in ACF as compared to the phase coincidence of received
signal with reference; under conditions of variability . of the
difference in ranges, the degree of reduction will be as great

as the magnitude of the range difference. This may be clearly
seen 1f we examine the reception of an unmocdulated signal by a
nondirectiocnal antenna, where the range difference Ar fluctuates
in time at a constant rate 4r = Arp + Avt. By substituting this
expression in formula {(2.3.2) and assuming that signal ampli-
tude is not. time~dependent, we derive the following eguation for
ACF in the non-feedback mode of operation:

3]
0,5kA0 T (2.3.5)

where T =- signal duration.

With an increase in the product. of AVT, we detect in the ACF

'\
w
5
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a series of maximums and zeroes, while the magnitude of maximums
gradually decreases. Zeroes occur when
AvT = na ,

where ) is wave length, n = 1,2,....

ACF will have the same properties even with a more complex
law of fluctuation in the difference of apriori and actual range,
if only the limits of fluctuation of this guantity exceed the
wave length.

4. The generalized autocorrelation function, strictly speak-
ing, has no central symmetry. Indeed, by substituting in (2.3.4)
in place of Aqg the quantity -AqR and replacing the variables in

the formula

we derive

2 <
Jo1ag 2N \
I L gmon
< Z( g 2N O Aq,)exp(zzfzzﬁaq,) dvdr (2.3.6)
By T1dg, .
where t, and t, -- moments of appearance and disappearance of sig-

nal at reception point.
Hence it follows that Z{-Aqg) # 2Z(Aq).

But because

m . m o e

0" ar

—— A U, i ey
= dq, 9 < g:r:L and ‘ Aq; % r |

then for the autocorrelatlon function we may write the following
expression:
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Z(—3q)= jf __fZ:‘;(rm ( £ —5’"_ > %Aq}) >

vr Ugi-f_- IES
. e g a.
/\LMJ(L.ME —~’—Aq, dV dt (2.3.7
! ;dfh !
whence it follows that the autocorrelation function is an even /56

function of the vectorial argument Agq, because (2.3.7) and (2.3.4)
are moduloes of complex-conjugated quantities.

The comparison of autocorrelation functions for signals hav-
ing variable and constant parameters indicates that, in addition
to common properties, there exist several distinctions between
them.

In particular, our attention is drawn to the fact that the
second term of the argument of complex signal amplitude

appearing beneath the ACF integral, in the given case is not only
a function of definable parameters, but is also time-dependent;
the time-dependence, which allows for the term dr(t)/dqg, is gen-
erally non-linear in nature.

We shall suggest that the similar argument of the ACF of
a signal having constant parameters 1is associated with the angu-
ment of a signal by a linear relationship and is not time-depend-
ent:

I T_:_ e e o
L[z, F}=? .E‘A(”A (£ — <) exp (i2=Ft; dt ’j
S 4 :
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Chapter 3
EVALUATING THE ACCURACY OF SPACE MEASURING COMPLEXES
3.1. Algorithms for making Apriori Data more Accurate and

Evaluation of Accuracy of Measurements for an
Isolated Signal having Unknown Initial Phase

The fullest presentation about the accuracy of measurements
is given by the aposteriori probability density of evaluations of
the vector of the parameters of motion, which corresponds to a
given realization or sampling of the signal-and-noise mixture [18].
As we know, it is a function of the probability density of apriori
data and the intercorrelation function of the reference and re-
ceived signals; for an isolated signal having random initial phase, /57
it is equal to

Poelaly) = Kw{qhexp (—E/N,) 1, (22 No) . f

(3.1.1)

We can see from the formula that the relationship of the pro-
bability density as a function of the magnitude of the parameters
evaluated has a complex nonlinear nature. The distributive law
is generally different from the normal one.

But in the reception of strong signals, whichwuhas the most
practical value, the argument of the Bessel function in formula
(3.1.1) greatly exceeds one; an approximation of this function
may be given by the relationship

g mees TR

where it is clear that with large values of the argument, the
denominator will have a weak effect on the variation of the func-
tion and the exponent will have the dominant role. Therefore,
the aposteriori probability density may be written in the form of
the following product:

_@(q ¥) = Ky (g) exp (27 Ny) exp (— B/Np) . f _ (3.1.2)

For small deviations of the parameters of motion from their
apriori values, the exponential indexes of formula (3.1.2) may
be expanded in a Taylor series in the neighborhood of apriori
values. In producing this expansion, we find that

37



Z(Q)"?E @ = 740 —é» LCEEDN EACRE
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-
— 5 E(.) }(q, qm)(fh )+ -

(3.1.3)

Here q, is the apriori value of the vector of evaiuated parameters;
)

di4 is the ith component of this wvector; Zi(qa) -- the value of

the first derivative of the ACF with respect to the ith component

of the vector of evaluated parameters at point g = Qyi Z" (q ) -~

the value of the second derivative of the ACF with respect‘to the

ith and jth components at the same point.

The maximum of the correlation integral generally does not
coincide with a point corresponding to apriori data, and thus the
first derivative differs from zero.

If the difference between apriori and actual values of the
parameters of motion is not very great, the correlation integral
may be accurately enough approximated by three terms of the Tay-
lor series. This means that the conventional probability den-
sity of reception of a given realization is represented by a
Gaussian error curve and the distribution is normal. This case
deserves more thorough examination, since simple analytic relat-
ionships may be derived which describe the resulting accuracy of
measurements, and algorithms for defining correctlon factors for
apriori values of the parameters of motion.

Let us state that errors in apriori data conform to the norm-
al distributive law and the probability density is depicted by
the formula '

- - ] o : -
@ (q) = Cexp [w—— —q.) B-Y(q—
T@= T (@ —q,)" B7'(q qn)J. (3.1.4)

where g_ -- the mathematical expectation of the vector of apriori
values Of the parameters of motion; Ba -~ the correlation matrix
of erros in apriori data. :
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By substituting (3.1.3) and (3.1.4) into (3.1.2}), we derive
the following vectorial relationship:

fﬂ’(q;y)=f<’aexp{—~2—(q—qﬂ)“ Bl g—q)— =

N 2 , P,
iy 1B = 22001 (6= 0 7/ (@) '@ |+

1 : T 7 1 ” ! ’
-+ A (g —q,) [ Z’(q,) — 5 E" (q,) ](q — q(,)} /
{(3.1.5)}

which in expanded form may be rewritten thus:

| . F. - 1 . . . e e
(G, oy qufy) = Ko exp {— 7;‘ (9 Gad 651G, — Goj) —
J
Voo -2 ¢
- VI‘E(‘IM s Gaz s (]arn) - Qz(qnh Faries qnnr)] - T i ((]} -
L] N() i
_Qai)[“{j (ffnl 1 ‘?(12 Ty ‘fa:rz)_ ?"E,ﬁ (Q(:I’ ‘?a.?s ey (]am) J_i_
LS il
N ) (‘-]r - eri) [ L{f/ (Q(n y ool (]nm)—- -/""5_'9"

' 1 3" - |
- ““_2* Efj (Qaiv Foze e -, (Izzm)J ((;j - ‘7”}) ] -

s RS

~¥n ‘this respect, the formula for the aposteriori probability
density may be reduced to the form

.

cw{q/y) = K. exp L—T(q—“ﬂn' B".‘(q ‘*q}:] ’ (3.1.6)
where § -- the value of the vector of parameters at which the

maximum aposteriori probability density is achieved.

Because the aposteriori distribution is symmetric, § is the
optimum evaluation corresponding to both of the earlier noted loss
functions. Consequently, the vector § may be called the vector of
precise values of the parameters of motion. The letter B designates
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the correlation matrix of resultant measurement errors. It is a
quadratic matrix, whose dimension is defined by the dimension of
the vector of definable parameters.

After carrying out the appropriate transforms, we derlve the
following equations for the matrix B and vector-column g:

[y

B_J:B;-:____%_[Z,,( )__l o
AR E(q,,)J,

_ {(3.1.7)
=g, 42 B[Z’( y— |
' ” el GG —— E (g, .
O q)}_ (3.1.8)
which may likewise be written as
le8;1|1#;3'{;__?_ “,5 1 .
f aif qﬂ) ” “‘“‘5 l E[} fqﬂ J .
X 2 | -
V=g 0B 17 b= L i, E
Here 2 (q,) = llzij(qa)ll -- the matrix of second-derivatives of
the correlation integral with respect to definable parameters of
motion (derivatives are calculated at points corresponding to /60
apriori data); Z'(q)) = llzﬁ(qa)ll -- the vector-column of first

derivatives of the correlation integral with respect to definable
parameters at the same points.

Formulas (3.1.7) and (3.1.8) are algorithms of optimum fil-
tration of signals having regularly variable parameters, which
allow us to define, in terms of a given realization of the noise
and signal mixture, the magnitudes of all compenents of the vector
of measurable parameters of moticn and to evaluate the resultant
accuracy of measurement. It is clear that correction factors for
apriori data and the correlation matrix of resultant erxor are
defined by the correlation integral or, more precisely, by de-~
rivatives of the correlation integral with respect to the defin-
able parameters of motion. Consequently, the set of the first
and second derivative from the correlation integral contains
very complete information both about the ‘desired correction fact-
ors and their accuracy.

Without a doubt, a noteworthy aspect of the formulas cited
is the possible distinct definition of correction factors for all
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definable parameters of motion. This is an interesting fact,
since the question is of the vector of corrections whose dimen-
sion exceeds one, although at the output of the optimum filter,
as a result of measurements, we obtain only cone value of voltage
equal to the definable value of the autocorrelation function. It
is clear that the possible elimination of apparent indeterminacy
is hidden in the excess measuring information on one hand, and
in the use of apriori data on the other.

Let us now touch upon the properties of the correlation
matrix of resultant measurement errors {3.1.7). If we were to
call the matrix elements which are the inverse of the correlation
matrix of erros "measures of accuracy", then the meaning of
formula (3.1.7) may be expressed as follows. The measure of
accuracy of measurement results is equal to the sum of measures
of accuracy of apriori data and derived measurements. It appears
that if the accuracy of apriori data is too small, the first com-
ponents of the matrix will be similar to zerc and accuracy will
be defined by the measuring system; conversely, with low accuracy
of the measuring devices, the specific gravity of the second
components will be small and the resultant accuracy will correspond
to the accuracy of apriori data.

In formulas (3.1.7) and (3.1.8) appear derivatives from the
correlation integral at the point corresponding to apriori data.
The correlation integral is a function which diminishes in pro-
portion to an increase in the difference between apriori and
actual values of the parameters of motion. Therefore, in pro- /61
portion to the increase in the difference of vectors dg and g
r

there is a growth in the first and decrease in the second deriv-
ative of the correlation integral. This corresponds to an increase
of the desired correction and a reduction of measurement accuracy.
Conversely, in proportion to the approximation of the vectors
mentioned, there is an increase in the second derivative and an
increase in measurement accuracy. The maximum accuracy will be
achieved if apriori data are taken as equal to the actual values

of the measurable parameters.

Therefore, if in matrix (3.1.7), instead of values of second
derivatives of ACF at the point corresponding to apriori data, we
substitute the values of the second derivatives corresponding to
the actual values of definable parameters, the derived matrix will
allow us to judge the ultimately attainable or, as it is customar-
ily called, the potential accuracy of measurements. ACF derivat-
ives calculated at points corresponding to actual data which, as
we know, coincide with the coordinates of the maximum correlation
integral, will be designated with the symbol Z;j(O), implying

under the argument of the integral the difference of apriori and
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actual data.

It follows from formula (3.1.7) that the correlation matrix
of measurements describing the potential accuracy of measurements
has the form

B~ =B, — Z'(0)/N, == B! = E"/N,, | (3.1.9)

where Z"{(0) -- the maximum value of the second derivative of the
signal autocorrelation function.

The aforesaid indicates the advisability of using automatic
parameter measurement systems having feedback with apriori data,
i.e., systems in which, as measuring information is accumulated,
apriori data are continuocusly updated.

It is also useful to focus our attention on the fact that,
in the event signals having regularly variable parameters are being
received, the most complete information about evaluable parameters
of motion is contained in the correlation integral or in some
function of it. In view of this, the data which are most import-
ant as concerns the definition of corrections for apriori data
and evaluation of their accuracy are contained in the first and
second derivatives of the correlation integral.

3.2. Algorithms of Optimum Processing of Signals Having
Fluctuating Parameters

Up until this point, we have discussed the reception of o¢ne
signal having a random initial phase, whose correlation integral
has the form of (2.2.14). 1If a signal having random phase and
amplitude or a signal having fluctuating phse or fluctuating amp-
litude and phase is implemented, the signal processing procedure
becomes complicated.

The ratio of probability for a signal having regularly vari-
able amplitude and fluctuating phase is expressed by the formula

—_— . — - fe el o am e

[ == r[ expy ( EJ\;;‘\;O}JFI} {24,/N), (3.2.1)

e T " m s m— et s 4 s

which assigns the definition of the weighted product of values of
the Bessel function from correlation integrals calculated for

each coherence interval (correlation interval). In practice, how-
ever, instead of calculating the ratio of probability, it is pre-
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ferable to calculate the logarithm from it. The replacement of the
given function by the logarithmic one is admissible in view of the
monotony of the latter.  In switching to the logarithm we can avoid
calculating the product, by replacing it with the summation:

th /== —
0l DU T (22,(N,) §E,,,‘fNU. } 0 (3.2.2)

e o m—— .

The calculation of such a summation is not difficult, since
the operation of defining the logarithm of the Bessel function may
be placed on a nonlinear element having the appropriate character-
istics. We may also note that for strong and weak signals, the
Bessel function logarithm is approximated by linear and guadratic
functions, respectively

-muﬂwmxbhhﬂwmzﬁ%x<h

attesting to the possible replacement of the nonlinear operation
by a linear or quadratic detection. Therefore, if the specific-
ations of the definition of the correlation .integral are not borne
in mind, we may consider that the signal processing procedure for
a signal having regqgularly wvariable parameters formally coincides
with the procedure for processing signals having constant para-
meters.

For a signal having fluctuating amplitude and phase (indep- /63
endent fluctuations), the ratio of probability is equal to

e e e L _ L. S e

N, (o
= n _ 0 exXp | . S ] Lo
"_k Ez + "V[I [ + ‘Ek )’ )

i

(3.2.3)

P

and it is clear that in the given instance, we may switch to the
calculation of the logarithm of the ratio of probability

R

Nt ®m TN TE (3.2.4)

e

Therefore, the procedure for defining the ratio of probability
also reduces to a weighted summation of voltage at the output of
a quadratic detector which follows the correlation circuit de-
signed to define 7, .

The algorithms {(3.2.2) and (3.2.4) guarantee the optimum
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processing of a signal upon its detection and during the measurement
process. But if we have rather reliable apriori data, the indi-
cated algorithms should be transformed to permit us to directly
judge the magnitude of corrections and measurement accuracy, i.e.,
it is desirable to derive from them algorithms similar to (3.1.7)
and (3.1.8). We shall cite these algorithms.

It appears that if the amplitude of a signal does not fluc-
tuate and the ratio of probability is expressed by formula (3.2.1),
then with the reception of a strong signal the same laws will be
in effect as those which occur in the reception of an isclated sig-
nal having a constant initial phase, whose magnitude is rxandom.
Therefore, in this case, to define corrections and evaluate the
accuracy, we may use algorithms (3.1.7) and (3.1.8), by substitut-
ing in place of the derivatives of the correlation integral and
energy

e e - Sl - - - —_ e

. 1 .. i ]‘w
Z[‘(q(!) - E’ 'E.;(qirr) . ’f,'j(qa) - T) E',-I-(qa)

T e en e -

-

of the summation of derivatives from the correlation integrals
and energy, taken within the signal coherence interval

T | )
- é__‘: Akf(qﬂ) T _‘; Ekt’(qﬂ) l !
.k - h

S |
El /;k,-j(qn)‘“‘.';*E'k,-j(%) j -
& oo

e (3.2.5)

To derive algorithms for processing a signal having fluct- /64
uating phase and amplitude, we will use a method similar to that
used in section 3.1.

The aposteriori probability distribution density of para-
meters of motion for independent fluctuations in phase and amp-
litude of a signal may be reduced to the following form:

@) = Ke(a)i(ya) = Kelq) explin i(y/q)] = |
1 '
= KGXP[—- ?; (9 — Gai) Baj (9, — g4 )} 2

: ' I v Z2 - N
X oex C——r ~——f—7— \- v
e p Ny % Notr', +?II} No+ E,

44



As before, let us assume that the actual values of the para-
meters of motion are rather similar to the apriori known values of
these parameters. In this case, we may consider that Ek(q): Ek(qa)

and the square of the ACF is represented by a Taylor series:

ZQ (q) = 22 qa)+ QZk(Qn)Lzm(qa) (ql an} '[_
+ E{ZM (42) Z:;(00) + 240020 7,,09,)1 (9; — g:0)(g, — Q'aj)"l"

T T T T T e (3.2.7)

Therefore, for the aposteriori probability density of defin-
able parameters of motion we derive the expression

.

N | SR

. wlg/y) = const exn{—?[:};] (G: — 9 B} (g, —q,,) — \

Ly 4 N -
N, Ekw Zaa) X Z,(4.)0, G )J} ; [

[

. e (3.2.8)
~where
CBy=By— 2V L i
. if alf NO " No","E?'k [ *M(qa)zw(cln] +
‘ -‘_.-.._ — e _—_lr :Zk(qa) Z;U (Qa)]
S-S —— (3 L2, 9)

or in matrix form

B! —=B-'— —2 No—l- % {le(q ) [Zk(qaﬂ’ *‘\

'—-l—sz(qn)zk(er)}' ’_ Lo (3 2 10)

————

This distributive density may, ultimately, be reduced to the form /65
T T I

. -'lw (3.2.11)
-

cwigy) _Loxlstew{—— é{}_ (g, — q)B7'(q; — quJI
. ] ‘

where
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or in matrix form

e N .

Ca 2 1 .

; — Nl __f————-ijJBZ(qJJ 3.2.13
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Let us note that whereas for an iscolated signal the apost-
eriori distribution is Gaussian only for a:strong signal whose
energy exceeds the spectral density of noise, for a signal having
fluctuating phase and amplitude, the distribution is Gaussian both
for large and for small values of the signal-to-noise ratio.

Let us discuss the typical features of the derived algorithms.
Similarly to what we encountered in discussing the process of pro-
cessing isolated signal, the basic constituent part of these algo-
rithms is the correlation integral and its derivatives with re-
spect to definable parameters of motion. But, since for the iso-
lated signal it was assumed that its phase does not fluctuate,
the duration of the definition of the correlation integral was
made equal to that of the measurements. More generally, when
the phase of a signal fluctuates, the duration of definition of
the correlation integral must be made equal to the duration of the
phase correlation interval. Moreover, we likewise have to some-
what modify the procedure for defining corrections and the error
correlation matrix. An examination of formulas in (3.2.13) in-
dicates that the correction for apriori value of the vector of the
orbital parameters is herewith defined by the weighted summation
of corrections calculated within each correlation interval of
fluctuations of phase in conformity with the formula ' '

RIRYHEPE

Al

which is a part of the similar formula (3.1.8) for an isclated
signal. This relationship is identical to the formula for the
correction which is derived using the method of least squares.
The weight coefficients used in summation of corrections for dis-
crete correlation intervals are the ratios

_ . o e [

‘ Zy(Q) (N 4 E ) == Z,8q)!(Ny + E ), ‘\ (3.2.14)
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whose numerical values are included between zero and one.

The values of the autocorrelation functions are a function
of the differences between apriori and actual values of the para-
meters of motion. Since, in conformity to the customary assump-
tion of the differences of q-q, are small, the spectral density

of noise and the signal energy are "virtually independent of these
differences. Therefore, the magnitude of the weight coefficient
in the given correlation interval is as small as is large the mag-
nitude of the aforementioned difference. Such nature of the re-
lationship of weight coefficients as functions of the differences
between apriori and actual values of the parameters of motion ex-
plains the absence of a factor before the summation sign which is
inversely proportional to the number of correlation intervals
confined within the duration of the measurement session. This
type of factor, at first glance, seems necessary, since without
it the resultant correction would be egual to the sum of errors
in discrete correlation intervals. The role of this factor is
essentially played by the aforementioned weight cdocefficients.

Thus, the values of the weight coefficients are functions of
the difference between actual and apriori values of the parameters
of mation. Moreover, as we can see from formula (3.2.14), they are
functions of the signal-to-hoise ratio in the correlation inter-
val (i.e., of the ratio of signal energy in the correlation in-
terval to the spectral density of noise), while this relation-
ship is as strong as this ratio is small. Indeed, when Ek »> NO'

the weight coefficient is equal merely to the normalized value of
the ACF Z (q )/E = Zkl(q ). If, however, the signal~to-noise

ratio is small the weight coefficient is equal to the product
of this same normallzed ACF value mubtlplled by-thersignal-to-
noise ratio

i _ 1
dﬁgzk(qa) - Ny Exlyn (@ ).

Let us now examine the distinctive features of the correl-
ation matrix. As with an isolated signal having initial phase
which is invariable during the observation session and regularly /67
variable amplitude, in this case, the matrix opposite to the error
correlation matrix of measurements is equal to the sum of matrices,
one of which is opposite the apriori data error correlation matrix,
and one which describes the accuracy properties of the measuring
complex itself. But in contrast to the previously discussed case,
the accuracy properties of the complex are described by the sum of
magnitudes calculated within discrete correlation intervals of
phase fluctuation. In turn, the aforementioned components, cal-
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culated within the correlation intervals, consists of two compon-
ents, The first of these

Zda) 2 zqy
A__-E‘k_l"hfo‘ AA;'O & B

is close in structure and magnitide to the component which we en-—
counted in examining a signal having constant initial phase and
regularly variable amplitude, and differs from it only in its
weight coefficient, which is precisely equal to the weight coef-
ficient which appears in the correction formula (3.2.13). The
second component was previously missing. It is proportional to
the product of the first deriwatives of the ACF

12, (0] 12 g0

Ne+ g Ny

_ Our interest is drawn to the correlation matrix of errors
deéscribing the potential accuracy of the complex. The highest
accuracy is attained, as we know, at g, = g. Consequently, after
completing the process of updating the parameters of motion, the
measurement accuracy will be reflected by a correlation matrix
satisfying the equation

B-'=Bt{_ Eﬂ__ﬁﬁ* E—Z;’j(O)

“ v No-+ E, N, {(3.2.15)

The second component of the formula describes the accuracy
increment attained as a result of using the means of the measur-
ing complex. It appears that the complex should only be put into
operation if this increment is sufficiently great in comparison
with the first term of formula (3.2.15). The primary constituent
part of the second term, as for a signal having invariable initial
phase and regularly variable amplitude, is the maximum value of
the second derivative of the ACF.

A measure of the potential accuracy of the measuring system /68
proper, described by the second term of formula (3.2.15), is de-
fined by means of a weighted summation of measures of potential
accuracy of measurements within discrete intervals of phase fluc-
tuation correlation. The magnitude of the weight coefficients

 approaches one with low levels of noise and is close to the mag-
nitudes of the signal-to-nocise ratics in correlation intervals --
with high interference levels.
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Hence it follows that with large signal-to-noise ratios in
the phase fluctuation correlation interval, the increment of
accuracy of data on the parameters of motion, owing to the oper-
ation of the complex means, is proportional to the first power of
these ratios; at small values of the ratioc of signal energy to
the spectral density of noise, it is proportional to the square
of those ratios. 1Indeed, at large ratios of signal-to-noise, the
increment of accuracy described by the second term of the cor-
relation matrix is proportional to the ratio of the second deriv-
ative of the ACF to the spectral density of noise. The second
derivative may be written as the product of signal energy times
the normalized value of the second derivative of the ACF:

Consequently,

Hence we can see the amount of gain in accuracy produced by
increasing the duration of the signal phase fluctuation correlat-
ion interval. It is likewise useful to note that if signal energy
in the phase fluctuation correlation interval greatly exceeds the
spectral density of interference, then to evaluate the potential
accuracy we may use the maximum value of the second derivative of
the ACF, calculated in the time interval equal to the duration of
the entire measurement session, T = szr since in this case /69

k

‘4:_4 Zi(0) = Z:;‘(O) T=iT),

The formula for the correlation matrix of-resultant measure-
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ment error (3.2.15) allows us to judge the nature of the relation-
ship between the accuracy and length of the measurement process.
With rather strong signals, the measure of system accuracy in-
creases in proportion to time. This signifies that when one para-
meter is measured, in proportion to the increase in time, the
guantity inversely proportional to error dispersion is equal to
the sum of quantities inversely proportional to the dispersions of
measurements in the initial and additional segments of time. With
weak signals, the increase in accuracy is retarded: the increment
in accuracy is proportional not only to the second derivative of
the ACF, but also to the signal-to-noise ratio in the added time
interval.

A specific representation on the structure of an optimum sig-
nal filtration system in a space complex for trajectory measure-
ments is illustrated in Fig. 3.1. This figure cites a consolidated/70

functional schematic of
a system implementing
the algorithms of opti-
mum processing of iso-
lated signals having
random initial phase

‘| Timer ~(Trans— reZiW* (3.1.7) and (3.1.8).
mitter
1 ! The system contains
\ =N signal processing devices
o RVG, i = Af; in addition to the de-
R 7T vices required for shap-
; i p ing and recording the
: 25 3 Bij fields: timer, trans-
| S : mitter, antenna, and
i i {f g, receiver. The basic
i £2 gmlﬁr ¥ T elements of these de-
f} FEG 143 i"es wi h reng vices are correlation
; ﬁ‘ circuits, which ensure
— . fa San . the computation of the

first and second deriv-
atives of the correlat-
ion integrals, reference
voltage generators (RVGi)

Fig. 3.1. Functional Schematic of Opti-
mum Signal Filtration System in Space
Measuring Complex.

and a computer for pre-
dicting the values of range and derivatives from predicted values
of range with respect to definable parameters of motion. This
machine controls the work of the reference signal generator and
shapes the information needed for the operation of the correlation
circuits. The circuits which calculate corrections for definable
parameters of motion and correlation matrices are also integral
parts of this machine. Coupled circuits in Fig. 3.1 are shown by
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circuits through which circulate data on vectorial quantitiesi.In
the same figure is shown a processing system for signals tapped
from the one-element antenna. If the measuring complex contains
several systems arranged in space, each of them must be provided
with its own processing system like the system illustrated in Fig.
3.1. Some elements may be common for the entire complex. They
are indicated in the figure by circuits having thick lines. It
goes without saying, the functional schematic of Fig. 3.1 is il-
lustrative in nature and does not reflect the particularities of
technical implementation of the processing system.

Let us note in conclusion that in computing the derivatives
of signal energy with respect to the definable parameters of mot-
ion, which appear in formulas 3.1 and 3.2, there are usually no
problems encountered. These derivatives are expressed by the
formulas

a9 Lo
1T 5 25.! ” AA'dV at,
v r

o 1 i{'{ air ar
Y 2 A 0‘7[ ()‘Tj _’_d(]l- d(]j [ }“ (A, ) J} avd.

e, .

As pertains to partial derivatives from the autocorrelation
function, we should examine the methods for computing them in
greater detail.

3.3. Derivatives of Autocorrelation Functions of Signals
Having Regularly Variable Parameters

Differentiation of the autocorrelation function of a signal
having rnadom initial phase is associated with some problems. The
cause of these problems is the fact that the derivative of the
modulus of a complex function is not equal to the modulus of its
derivative. Therefore, prior to differentiating we must calcul~-
ate the modulus, and only the thus derived weighted function may
be subjected to differentiation. To simplify computations, let
us introduce the following notations:

e

. Z::""lj‘s‘ all + 25." )E(t)X
| .

Tove
gr
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where

!]:—-E A(t—i— A(f) cos 1.»(1.\r)n‘,'l/’(1!1.’ 2
3 | ),__ \ 3-8
. o 2Ar L -w,_" ' '
K Q_-gg (t+— )A(annﬂiﬂdVd& (3.3.3)
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Taking these notdtions in account, the formula for the auto-
correlation function is :

S G
=gy il k ' (3.3.5)

Let us differentiate the derived weighted function with re-
spect to 951 and qajz

llﬁ ;' _1_ fl jli _{"!215,'
_f, i 2V EXR ' {3.3.6)
Zi=t 1 \‘
i T V!Lfﬁ “lf+lﬂq+[ QF+IQ, é
1 7
Y ij+pﬁ( Af+fzm(f[ +1,1,, )//
o et (3.3.7)

Let us compute the first and second derivatives of the cor-
responding integrals and values of these derivatives at a point
where the apriori and actual values of definable parameters of

motion are equal to each other, i.e., they correspond to the zero

/72
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differences.

Let us mention that the variables herewith are the apriori
values of the parameters of motion, which under other equal con-
ditions define the clearly defined (in formulas 3.3.3 and 3.3.4)
magnitude of difference in apriori and actual range: r = r - r, -

In the formulas derived in differentiation, there appear
partial derivatives of apriori ranges with respect to the apriori
values of the parameters of motion Bra/aqai. Henceforth these

derivatives will be denoted by the symbol ar/aqi.

Partial derivatives of the following form will alsc be en-
countered in the formulas

0A,(E+28rjv) |
‘ ar, U ) )

It is easy to ascertain that they are associated with the
derivatives of these same quantities with respect to time by the
equations

i.. 0Aa (t QA]‘fT 1) ()A" L‘* z-&’"ﬂkr) dt’t—l—-Q .\I';Egr) af‘
.(31" d( ‘| QA}‘f‘U 2: ara a‘?a! |

e e
..... S e e == T
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Let us introduce the notations:

e (}‘Aa(t—FQAr;'ugI)_ oty 2
IR or, oY

In view of this we may write:

[ H Or (z; QAr)A(f ) cos 4 (47) dvmj
Y. . aq, -

Br v r gr

H (r+2“)A(msin-p(mnp;mr)dvat/'/ - (3.3.8)

T gr
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By substituting these eguations in the expre851on for the
second derivative of the ACF.of thé signal fields7we may derive
a general formula for the sécond derivative of the ACF which de-
-scribescthe accuracy of measurements at any relatlonshlps between
the apriori and actual values of the parameters of motion. This
formula, however, is extremely unwieldy, and thus we shall only
cite the formula for the maximum value of the derivative. To cal-
culate the maximum value of the second derivative of the ACF, let
us first define the values of the integrals Il and 12 and their

derivatives, and likewise the derivatives of phase Yy where d,

= q, i.e., at points where Aq = 0:

11(0).—_5_[,42(5)(::1/&:2@ (3.3.13)
vr ' R
1,(0)=0, % (0)=0; : (3.3.14)
» 2 o or
3 (0) = — H—2k. ,
i I %, {?) 37, (3.3.15)
. 4 or ar
¢ O) = 7 () —
. Py v?g:r ath 0:?! .:(]
°2r [ 1° -
~ ardr [ o @, () k] (3.3.16)
L= j‘j_\————--A’AdVdf (3.3.17)
: glﬁ' -
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We may now write relationships for the maximum values of the
second derivatives of the autocorrelation function. By substitut-
ing the appropriate values of the integrals and their derivatives
into (3.3.7), we derive

o L0, 7
C2Z] ()= [ SO+ ~———-f,l(oj }J

9 pr
=2 ” T AAdVdr |-
v T /

(3.3.21)

Vor
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Finally, there is a certain amount of interest in such form
of presentation of secondary derivatives:
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“gr
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1
where kE = k + ¢t/ugr.

If the initial phase of signal field oscillation carriers is
known, the integral 12(0) and its derivatives would be equal to /77

zero and the expression for the maximum value of the second deri-
vative of the ACF would acquire the form

‘ 2 L
Z,(0) = — SS Pr_pnavat+
Ugr v T

d0q;0q;
g—I—EJj\ or _or [ 44 —keAz]dth.
‘ dg; a‘?j v
L - | (3.3.24)

But, as we know, in space measuring complexes we use ultra-
short waves and therefore, stabilization and definition of the
initial phase of oscillation carriers is coupled with enormous
technical problems. Moreover, the use of information .contained
in the phase of oscillation carriers, due to the heterogeneity of
the results of phase measurements, is only possible in practice
with the use of differential-range or angular measurements. There-~
fore, in examining the possibkilities of space measuring conplexes,
we generally must base our calculations on formulas (3.3.21) and
(3.3.22)}.

The signal envelope A(t) in practice usually possesses sym-
metry with respect to some moment in time. Thus, its first
" derivative is an odd function with respect to this moment in time
and the first integral of formula (3.3.23) is egual to zero. By
allowing for this, we will later, for most cases, be using form-
ulas in which the term from the first derivative of signal amp-
litude will not be shown under the integral sign.

Prior to switching over to a detailed analysis of formulas
for the maximum values of the secondary derivatives of the ACF,
let us consider the structure of these formulas and some general
properties of them.

It can be ascertained that the first two terms of formula
(3.3.23) reflect information contained in the signal envelope;
the third term -- allows for information supplied by the dif-
ference in phases of oscillation carriers, and likewise the in-
formation due to carrier phase modulation. In contrast to the
first three terms, which describe the useful effect of field ut-
ilization, the fourth term allows for information losses occur-
ring as a result of missing data on initial signal phase.
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Analysis of formula (3.3.22) sheds some additional light on
factors of which the secondary derivatives of the ACF are functions.
Here may be emphasized those terms initiated by phase modulation /78
of the emitted signal, and terms occurring as a result of phase
fluctuation governed by SV motion. The third and fourth terms of
formula (3.3.22) are related to the first group; the components of
the subsequent term, which are functions of phase derivatives, are
also related to this group. The fifth term and the components of
the sixth term, which contains the wave number, are related to the
second group.

All the terms of the formula describing the second derivative
may be divided into groups by the following feature as well. In
front of the terms of the first group stands the number l/Uér; the
gr; and the terms
of the third group contain a coefficient equal to the square of the
wave number k. It appears that the coefficients standing before
terms of the first group are distinguished by the least; and before
the terms of the third group -- by the greatest numerical values.
If the integrals which make up the terms of the corresponding
groups are similar to each other, then terms of the latter group,
which contain the square of the wave number, will carry the most
weight.

terms of the second group are proportional to k/u

From the preceeding statement, it is clear that formulas
(3.3.22) and (3.3.23), in conjunction with the appreopriate form-
ulas from sections 3.1 and 3.2, describe the potential accuracy of
measurements, In analyzing these formulas, we must investigate
the semantic content of this concept in greater detail.

We only gave a general definition of this concept before.
We agreed that potential measurement accuracy would imply the
highest accuracy ©btained in measurements using a given signal
against the background of interference, which is likewise con-
sidered given by the measuring system, which introduces no errors
into the measurement results. In examining the composition of
formulas (3.3.22) and (3.3.23), we may conclude that this notion
characterizes the accuracy which may be achieved with complete
utilization of signal resources. Formulas (3.3.22) and (3.3.23)
give the most general and complete picture about information
provided by all signal parameters with their efficient processing,
regardless of the weight relationships of the data contained in
discrete signal parameters under certain concrete conditions.

The potential accuracy which is described by general inform-
ation resources of the signal electromagnetic field in a given
area of space during a given interval of time we shall call the
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potential accuracy of measurements.
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It is well known, however, that different field parameters
may have different information-metric capability according to the
selection of the wave range, form, law of modulation, and geo-
metric quantities on which the given parameters provide inform-
ation. On the other hand, as experience has shown, systems which
differ in the parameters used differ considerably in their struc-
tural and technical characteristics. Systems are usually designed
and used which have been calculated to obtain data in terms of
one signal parameter. Thus, in addition to the idea of potential
accuracy of measurement, which describes the information resources
of the field as a whole, we should also use similar concepts for
the discrete parameters of the field, as well as for different
field parameters with respect to the measurement of geometric
and kinematic quantities used to reflect SV motion. Therefore,
henceforth, in addition to the term "potential accuracy of mea-
surements" we will use such terms as "potential accuracy of phased
range-finding methods of measurement for Cartesian topocentric
coordinates", "potential accuracy of phased goniémeter methods for
defining Keplerian orbital elements" and the like.

As we know, these type of terms are being used in practice.
It appears that the use of such terms does not eliminate the pos-
sible use of a more general term -- potential accuracy of measure-
ments, since the latter not only allows the evaluation of field
resources as a whole, but moreover opens ways for exposing inform-
ation relationships and connections between discrete signal para-
meters.

Formulas (3.3.22) and (3.3.23) describe the limiting resources
of electronic methods of measuring the parameters of motion, i.e.,
those accuracy boundaries beyond which it is impossible to pass
without increasing signal energy, reducing the level of inter-
ference, or increasing the dimensions of anténna sysstems. No
improvement of signal processing methods, within the framework of
presentations used, will allow us to achieved a reduction in error
as compared with those values which are defined by the formulas
in guestion. Consequently, the following feature of formulas for
maximum values of the secondary derivatives of the ACF is of inter-
est. :

Of those geometric quantities reflecting the conditions and
methods of measurement, only instantaneous range to the SV is /80
presented here, or more precisely, its derivatives with respect -
to the definable parameters of motion. WNeither the velocity
characteristics of motion nor the goniometer coordinates of the
objects are clearly presented in the formulas, although among
the definable parameters of motion we usually include both velo-
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city and goniometer quantities. The reason for the absence of
data on the velocity and angles in these formulas is associated
with the fact that the primary source of data on the parameters
Of motion is the signal time lag proporticonal to the distance
between the SV and the point of observation.

This does not imply, generally speaking, that information on
the velocity and angular coordinates is not taken into account by
the formulas in guestion. In reality, it is reflected in them
tacitly. The consideration of speed data is done by the deriv-
atives of range themselves, which function as time-functions and
are integrated with respect to time. Angular information on SV
location is included in values of the subintegral expression which
are subjected to spatial integration, which is a function of the
peint coordinates of the antenna field and consequently, the an-
gular coordinates of the object.

Therefore, the general formula relationships which describe
the potential accuracy of measurements tacitly take into account
no only information about ranges to the SV, but alsco information
about the angular coordinates and velocities of S5V motion.

The problem of reflecting angular and velocity information

will be investigated in Chapter 6 in greater detail.

3.4, Vectorial Form of Writing the Maximum Values of the
Second Derivatives of the Autocorrelation Function

- The maximum values of the second derivatives of the ACF
may be written in a more compact form, if we use vector symbols.

Let us introduce the vector~line of partial derivatives of
range with respect to definable parameters of motion:

"'_"—_— or  dr or or Ir a}_" '
9q dq, 0. 0q, Oq, Oq. Iqs |l (3.4.1)
The product matrix of partial derivatives of range with re- /81

spect to definable parameters of motion in the given notations
may be written as follows:

or ar

dq,  04;

r_,:[ch“éi [
= dql aq (3.4.2)

Consequently, the matrix of maximum values of the second

derivatives of the ACF acquires the form
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Let us further use the vectorial form of writing the in-
stantaneous range from the point of observation to the space ve-
hicle.

We will introduce the topocentric system of coordinates which

in orientation may be inertial, Greenwich, meridional or any other.
In this system, SV location will be represented as a radius-vector

X=|laxxaxa| 7, ’

and the distance from the cbservation point to the 8V -- by the
length of this radius-vector, which is equal to
i r=f1fx?4-xgq—xg;:lexpmi:] (3.4.4)

The vector-coclumn of partial derivatives of range with re-
spect to the parameters of motion has the fellowing form:

ara‘idx[;

u-[x"x]’m:‘:T}(Tga.f (3.4-5)

% dq

Consequently, the product matrix of partial derivatives of
range is represented by the formula

'_{()r]"’ or 1 {dx'
| Lda] da T 2 loq.

Therefore, the matrix of maximum values of the secondary
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derivatives of the ACF with respect to definable parameters of
motion is egual to

- b

, N S
v . I v o #__ gl i
Z (0)——2_H ‘ {dq] XX aq( v?gr AA JgﬁA?)dth—f‘
v T

L[] e

) XAEdVdf). -
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(3.4.7)

Let us note that this form of writing the second derivative
of the ACF is valid only if SV motion is given in a topocentric
system of coordinates.

Formula (3.4.7) must be appropriately transformed if the

origin of the system of coordinates is transposed to a point in
space which does not coincide with the point of observation.
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Chapter 4

ANALYSIS OF POTENTIAL ACCURACY OF DIFFERENT METHODS OF MEASURING
THE PARAMETERS OF MOTION

4.1, In Place of an Introduction

In this chapter we are planning to give an analysis of the
formulas cited in section 3.3 for the maximum values of the sec-
ond derivatives of the ACF with respect to definable parameters of
motion. This analysis should begin with a discussion of a most
simple application of these formulas -- the evaluation of potent-~
ial accuracy of measuring the parameters of motion of a uniformly
moving object. To simplify the formulas and avoid spatial inte-
gration which in this case is of no theoretical value, we will
assume that the signal is received by a one-element nondirectiocnal
antenna. Let us assume, moreover, that the function which defines
the law of signal phase modulation is selected so its first deriv-
ative is an odd function of time. Finally, let us consider that
the amplitude of the received signal is an even function of time,
and the inception of time reference coincides with the location
of the axis of symmetry of the received signal envelope.

We will show that in the particular instance of evaluation
of initial phase to an object and the constant rate of motion,
relationships (3.3.22) and (3.3.23) are reduced to derivatives of
formulas of Woodword's indeterminate form known from the liter-
ature. Indeed, by assuming that

r = rn + vt (4.1.1)

and taking into account that

1 1
Br/arn = 1; wrn = =2¢ /Ugr - 2k = - 2ke;

— ® 2 —_ - = - .
dr/dv = t;: 3 r/arnav = 0; wv Zket, (4.1.2)

we find for the maximum value of the second derivative of the ACF
with respect to initial range the following expression:

. - 72 72 -
. 2 8

L ) = —— j AA" dE—2 k2 At df
N | Htraef

-T2 —Fi2
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The last two terms of this formula describe information
cbtained as a result of amplitude and phase modulation, the first
relfecting data on velocity due to the Doppler shift of oscillat-
ion carrier fregquency. It is easy to detect that, all other things
being equal, the first term greatly exceeds in magnitude the two
others. Thus, most often the measurement of velocity is done at
the oscillation carrier frequentcy, and in this case the maximum
value of the second derivative of the ACF with respect to velo-
city is expressed by ithe formula [13]

T

ZL(0) = — 2k? f 12 A2 dt.

(4.1.6)

Let us no move to the calculation of a mixed second derivr,”
ative of the ACF. Taking into account assumptions on the even
parity of the function A{t} and the odd parity of the first deriv-
ative of the modulating function, for the maximum value of the
second mixed derivative we find the equation

e et o b

ri2

Z (0= — i te' Atdt. i1
{ n 'Ugr* _‘”2 ( . . 7)
Therefore, we are convinced that formulas (4.1.5), (4.1.6), /85
and (4.1.7) are derived from the common formula (3.3.22), if it
is used to evaluate constant quantities -- initial range and

velocity of objects.

4.2. Accuracy of Phase and Pulse Telemetry Methods

The second stage of analysis of accuracy should be dedicated
to an examination of the features of phase and pulse telemetry
methods which are related to a number of methods which have re-
ceived the widest use in space measuring complexes. In phase
measurements, information on parameters of motion is included in
the phase shift of the envelope of the received signal with re-
spect to the envelope of the reference oscillation. The pulse
method of measurements is based on defining the time lags. of the
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received pulse with respect to the emitted pulse. In implementing

Fhe phase method, the initial definition and stabilization of
instrument lag is ensured, which is tantamount to defining and

stabilizing the initial phase of the envelope. A similar operation

is likewise performed in measurements with pulse methods.

Formulas for evaluation of potential accuracy of phase tele-
metry methods for defining the parameters of motion may easily be
derived from general relationships (3.3.22) and (3.3.23). In

this regard, we must take into account that phase telemetry methods

are mainly implemented at modulation frequencies and conseguently,
for measurements we use signals whose amplitude fluctuates in time

in conformity to the harmonic law
A(it):Am(I+mL0‘3!.3f).‘f (4'2'1)

For theé’sake of simplicity, we will assume that signal phase
modulation is absent.

Information included in the phase of carrier oscillation is
not usually used in phase telemetry systems, and thus in evaluat-
ing the accuracy of measurements it is sufficient to bear in mind
only the second term of formula (3.3.22). As a result, we derive

the following expression for the maximum value of the second deriv-
“ - ative ‘of the ACF:

L e e e s m———— - N -

m* (12 r

" dr or :

£, Q) =— “ A2 dvdt, |

<l 2 . m ' 4.2.2
grii % % ( )

If signal amplitude fluctuates little during a measurement
session, the second derivative of the ACF is reduced to the form

e QQA"

;) (0=

(4.2.3)

dq,

In its structure, the maximum value of the second derivative
is similar to the expression for the maximum value of the second
derivative of the ACF of an unmodulated carrier having a known
initial phase

= — 241 24V d
(O) o S‘f 0q, dqj14 t\ (4.2.4)

which is completely natural.

The last factor of expression (4.2.3) -- the space-time
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integral of the product of partial derivatives -- with an accuracy
to the constant factors coincides with the expression for the co-
efficients of equations used to process results of telemetric
measurements aimed at defining the parameters of motion.

Examination of the phase telemetry method thus permits us to
show the meaning and function of partial derivatives of instant-
aneous range with respect to definable parameters, which appear
in all terms, without exception, of the general formula for the
maximum values of the second derivatives of the ACF. Partial
derivatives in formulas (3.3.22) and (3.3.23) reflect the stage
of optimum signal processing which corresponds to the stage of
"secondary"”" processing of trajectory information. The purpose
of the stage of "secondary" processing consists, as we Know, of
defining the parameters of motion with respect to range measure-
ment results.

It should he stated, however, that (4.2.2) and not (4.2.3)
is more similar in content to the formula of coefficients of norm-
al equations. Indeed, beneath the summation sign (or integral)
in the expression for coefficients of normal eguations, in addit-
ion to the products of partial derivatives, we must represent the
weight coefficients, whose magnitudes are inversely proporticnal
to the dispersions of isolated measurements. The function of
these weight coefficients in this case is filled by the factors
22dt, which reflect the influence of errors of some imaginary
neasurements dt in duration. Hidden within these factors is also
the relationship as a function of distance between SV and the
point of observation. Indeed, signal amplitude at the point of
reception AL is associated by an inversely proportional relation-

"~
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|

ship with the distance to the SV. Consequently, the factors
A; allow for the relationship between signal strength and range

to the 8V and indicate the influence of this relationship on the
accuracy of defining the parameters of motion.

Therefore, formula (4.2.2) and formulas in section 3.3, in
addition to everything else, define the choice of weight coeffi-
cients in optimum signal processing; these coefficients are di-
rectly proportional to signal strength at the point of reception
and consequently, inversely proportional to the square of the
instantaneous range between the SV and the point of observation.

It should be noted that in forming the weight coefficients,
several other guantities participate which lie beyond the limits
of formulas for secondary derivatives of the ACF. Participating
in this process, in particular, is the quantity of spectral den-
sity of noise Ng» which with Z;j(O) enters into the expression for
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elements of correlation matrices cited in sections 3.1 and 3.2.

On the other hand, the material in section 4.1 clearly shows
that the maximum values of the secondary derivatives of the ACF
depict the process of measurement of instantaneous range and
velocity of objects.

It is therefore clear that the formulas for maximum values of
the second derivatives of the ACF encompass the measurement pro-
cess of topocentric SV coordinates (and likewise, their derivatives)
and the process of processing these coordinates to define the
parameters of motion.

Let us now examine expressions for the maximum values of the
second derivatives of the ACF corresponding to the specific con-
ditions of pulse measurements. Let us assume that the received
signal is in the form of short pulses which occur with a certain
pericdicity during the measurement session of T duration. Let
us state that the pulses are so brief that the partial derivatives
of range with respect to the parameters of motion, within the lim-
its of pulse activity, may be considered constants.

With the foregone assumptions, the partial derivatives of range
may be removed beyond the integral signs in formula (3.3.23); these
derivatives, generally speaking, are functions of time and the
coordinates of the reception point and are related to the moments
of activity of the corresponding pulses. Assuming, as before,
that the envelopes of the pulses are even, and the derivatives of
modulating functions are odd functions of time, for the maximum /88
value of the second derivative of the ACF we derive the equation

‘3"’-" Ol | § ¥d Qa!l/dt..;

L )=
2}, 0) 0,

(4.2.5)

Vl‘. i

In this formula, the space-time integral with respect to the
area of reception, corresponding to all antennas of the complex
and the entire time cycle of measurements, is replaced by a double
summation of integrals, each of which is calculated with respect
to an individual antenna of the complex and discrete pulse.

The integrals entering into individual terms of the last
formula are second time derivatives of the ACF of discrete pulse
signals, received by different antennas of the complex:

4 YYA?anh:ZHdW (4.2.6)
Uy - o
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They describe the potential accuracy of measurements of the time
~lag of isolated pulse signals. In general, formula (4.2.5) also
is analogous to the formula for coefficients of normal equations,
which is used in processing results of telemetry measurements;

the integrals of (4.2.6) act as weight coefficients in these form-
ulas.

The particular cases of using the electromagnetic field which
have been examined in this section are associated with the use of
information supplied mainly by modulating oscillations. In the
measurement process, however, information may also be used which
is contained in the phase of carrier oscillations. Information
on carrier phase is implemented, as we know, in Doppler and gonio-
meter measurements. Let us £irst examine the problem of accuracy
of Doppler methcods of defining the parameters of motion.
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4.3. 'The'PotentialJAcduraquofithe,Doppler Method.

At present, electromagnetic fields whose initial phase
is random and constant Within the limits . of some interval (the
noise. correlation 1nterval) .are used in practice for measure-
- ments. " Subsequently, it is- 1mp0531ble to-realize phase methods
with a measurement. at the carxier frequency by means of such
signals. Nevertheless, in.the ranges used for communications
with space’ vehicles, these methods are not.realizable for
~another -‘reason:  for their execution, practically insurmountable
-difficulties arise.in eliminating the ambiguity of. the measure-
ments. Nonetheless, with sufficiently high frequency stablllty
(this means sufficiently great length. of the phase's noise
~correlation ‘interval), signalg. with. an unkmown initial phase
can be used for defining the .parameters of motion. Measure-
ments’ become p0551b1e if, hav1ng rejected the . use of ‘infor-
mation 1ncluded in. the carrier's initial phase, information is
.used which.is contained in.an increment of the phase in a
- measurement interval or,’ whlch is .in essence“the same, the
frequency of .the. .carrier waves. The correspondlng methods of -
'measurement have been called Doppler methods.

Doppler methods ‘have in recent years beenusrgnlflcantly
" developed in communlcatlons ‘'with progress. in the areas of
aviation and:space technology... Successes in stabilizing the
- frequency generations by -means. .of which. soundlng and reference
51gnals are . formed have played a. significant role .in. this.

The materlals in Chapter 3 allow us to. evaluate the poten-
tial accuracy of Doppler :methods. in the .general..case where not
-only' the velocity parameters, but 'also. .the elements of the
objects are included in .the. number of definable parameters of
.motion. Let us:assume at first that ‘the on-board transmitter
of the SV emits unmodulated waves which, upon reception on
‘Earth,. are fed to the /'signal input of a guadratic. correlometer
(Fig. 4.1). Let the reference signal representing the model
- of the signal. to-be received also. be formed on Earth according
to a*prrormadata., The initial. phase of the reference signal
obviously does not. have a value; however, a.phase increment
-during. the time of:méasurement and the. temporary motion of -

.. measuring this .increment, i.e., the frequency of the 51gnal,

“should be matched so that they correspond to the. phase in-
crement and the frequency of the useful signal. Such congruence,

. as is.well known, will be attained with congruence of the real

and a prlorl values of the .parameters of motion. ©Let us again
- note that, in contrast.  to, rhase range—measurlng methods, with
_a measurement.at: the carrier frequency,’ information about the

'“‘parameters of motion in Doppler measurements is derived from

'phase measurements and “signal frequency .measurements. Since
' ' 71
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the . phase increments and frequency increments which we are
discussing are .due to the Doppler effect, the method described

is called the Doppler method.
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erato .

Fig. 4,.1.

from the computer

Structural diagram of a sguare

correlometer.

It follows from.the.arqﬁments_givenrthat,the last two
terms of formula (3.3.23) give the overall idea of the poten—

tial accuracy of the Doppler method,

"since ‘they reflect in-

formation contained in the carrier wave phase in conditions
where the initial phase of this wave is not known and can
assume any value within the limits of 0 to 2 m with egqual

Thus,.. disregarding.the "amplitude" terms of for--

mula (3.3. 23), we . find that the potential: accuragy of Doppler
measurements. is characterlzed by the following magnitude of

the maximum value of the ACF.second.. derlvatlve with respect to

the definable parameters:

2;,(0):——-5-j f

QM(K d%¢-

or_ _or 2 A2dV dE +
dq; dg; e

)(Hﬂ or kl.;A?dth).
/ . aqj !
vV T

(4.3.1)

In der1v1ng this formula, it was taken into account -that Dop-
rler: systems use a predomlnantly non-lnqulry method of opera-

tion.

Whlch parameters of motlon can be determined by the Dop-:

pler method?

It.is evident.that if the SV moved. with. censtant

velocity:. relatlve to. the observer (i. e.,.only moved away ¢
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from or closer to it), then it would be possible toumeasure
only its velocity. Formula {(4.3.1) verifies this. - Actually,
in the absence’ of phase modulation, the maximum value of the
ACF second derlvatlve with. respect to the initial distance is
"equal to ‘zero, although the maximum value of the ACF second
"deilvatlve w1th respect to the velocity has a defined finite
value.,

It 15 ea31ly noted that the ACF second derlvatlve with
respect to the initigl dlstance becomes: equal to zero because
dr/drn ='1l. However, in-the overwhelming majority of actual
situations, partial derivatives. of the instantaneous range
with respect to the SV's initial coordinates are different
-from 1, and equalization of the first term of formula (4.3.1)
by the. secondj generally speaking, does not occur.' Consequent-
ly, in these situations the ACF second derivative with respect
to. the coordlnates will not be zero, which attests to. the pos-
sibility of deflnlng the initial condltlons mentioned. '

. In shlftlng from an unmodulatad signal to a phase-modu-
-lated signal and similarly disregarding previous. information
which was included in' the signal's amplitude, we find that this
transition ' does not lead to. a 51gn1f1cant change in the pro-
cesses which occur in Doppler measurements, although phase
. modulation can lead to. an increase or decrease in. accuracy.

As an.examination of the first. -and. second- compcnents of for-
‘mula (4:3.1) shows,‘the potent1a1 ‘accuracy is. determlned in
. a given case- by the value of the effective wave number equal -
Cto kgo= k + ¢ /Vgrr and consequently if ¢*> 0, then kg > k, and
“the accuracy of' measurements by means™of a phase—modulated
- signal will be greater than the accuracy of measurements on
~unmodulated carriers. It is interesting that an increase in
the accuracy of Doppler measurements because of phase modu-
lation is taken into account by the same terms of formula
(3.3.22) which describe the increase in accuracy of pulsing
methods of range measurements,

A model of a unlformly w1thdraw1ng or unlformly nearlng
_object shows that measurement- conditions exist which are un-
favorable for application of the Doppler method. It is-there-
fore advisable to examine the guestion of feasibility conditions
for Doppler methods in a somewhat more general form. It is
evident that the magnitude of the ACF second derivative, meaning,
the accuracy of. Doppler measurements, 1s greater than in other
similar conditions the smaller the second term of formula
(4,3.1) is in comparison with its first member. Accuracy com-
pletely depends on the magnitude of the difference between

these terms. Conseguently, for evaluating the conditions for
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for attaining the greatest accuracy, it is necessary to develop
conditions in which the difference referred to is maximum,

Using the Bunjakovskil-Schwartz inequality, restricted to
the case of a signal with constant amplitude, for the diagonal
elements of the ACF second derivatives, we will derive the
following%relation:

or 2 dr l
vTr 2 > — :
7 M ( aqi) AV dt s (J f@ql ed'/dt) , (4.3.2)

The equality in this formula is attained only in the case of

the independence of the magnitude

dar \
-

dg, e

| (4.3.3)
from variable integrations, i.e., from time and the spatial
position of the observation polnt . In the general case, the

- magnitude of the product (4.3.3) ﬁSTanﬂnctan of time and the
coordinates of the receptlon p01nt- consequently, the maximum
value of the ACF second derlvatlve will not be zero, i.e., the
Doppler measurements. will yield SpelelC metric information.

Inequallty (4.3.2) is increased with a stronger degree
of variability of function (4.3.3) in the measurement interval,
and it will be espe01ally large if function (4.3.3) in the space-
time area of reception is. alternating. PFinally, the inequality
attains its ultimate value when the first part of inequality
(4.3.2) becomes equal to zero. This occurs when function (4.3.3)
is an odd function of coordinates and time. In the latter
' case, the potential accuracy of the Doppler method will be
determined by the magnitude of the first component of formula
{4.3.1) and, consequently, will be equal to the potential
accuracy of the phase method of range measurements at the fre-
guency of carrier fluctuations, i.e., the frequency obtained
with a known initial phase of carrier fluctuations.

Only partial derivatives with respect to some parameters
of motion can satisfy the condition of oddness.  Parameters
of motion whose partial derlvatlvesvdo not satisfy this con-
dition will be defined with less accuracy. Parameters whose
partial derivatives are not. functions of the coordinates and
of time are generally not determined by Doppler measurements.
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Thus, the potential accuracy of the Doppler method for

defining parameters of motion is described by the max1mum value

of the ACF second derivative, represented by formula (4% 3.1).

Let us return to this formula once more and turn our at-
tention to some of its properties. First of all, it is sig-
nificant that a wave number appears in this formula, meaning
that the accuracy of measurements is determined by the fre-
quency of the carrier fluctuations. This is a very important
fact. Let us recall that the accuracy of phase range-measuring
methods is a functionzgfy the frequency of the modulating fluc-
tuations or the freguency of the pulses.

In further analyzing (4.3.1), it is impossible not to
turn our attention to its connection with the formula for
coefficients of systems of normal equations. It is seen that
the first, fundamental term of formula (4.3.1) is analogous
in structure to thé formula for the coefficients mentioned.
However, the analogy ends here, since with further examination,
substantial differences are revealed between the formulas.
The first is connected with the presence in (4.3.1) of a second
component which is absent in the formula for coefficients of
normal  equations. The derivation and role of this component
has already been discussed.

The second. difference between :the formulas is more im=-
portant in a principal respect than~the first; this is the
difference in the comp051t10n of the first component's terms.
In the formulas for ‘Coefficients of normal equations, formed
~ in processing the results of Doppler’ measurements, the partial
derivatives of the radial ve1001ty component .according to
definable parameters [1, 4] occur, and 1in (4.3.1), partial
derivatives of the lnstantaneous range are shown instead of
these, In this respect, it is clear that each of the terms of
formula (4.3.1) separately or their algebraic sum do not
result in the formulas for coefficients of normal equations
‘with the partial derivatives of the radial velocity component.
Thus, generally speaking, there is a definite difference be-
tween evaluating the accuracy of Doppler methods with fre-
guency measurement data processing according to the method of
least squares and evaluating the potential accuracy. Deter-
mining the degree of difference in accuracy evaluations is
difficult in a general form; therefore, this gquestion is not
examined here., We will limit ourselves to one short remark.

We must keep in mind that the realization of a measurement
: procedure which ensures attainment of accuracy of egual poten-
tial is connected with surmounting significant difficulties
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and requires much more complex and expensive equipment than'
the execution of less precise procedures. In this connection,
measurements are usually made in practice by recording the /94
Doppler frequency shift or integrals of it after a fixed
segment of time with subsegquent processing of measurement data
according to the method of least sguares. This methodology is
distinguished by its simplicity and very high efficiency.

Only in those cases where especially high accuracy and reso-
lution are required is correlation, i.e., optimal signal pro-
cessing, used. Similar processing is used as necessary in
radar systems for lateral scanning of the Earth's surface [27],
which is an unusual ("non-space") example of the execution of
a Doppler measurement method.

Moreover, it should be kept in mind that the optimization
of measuring systems in practice -is usually carried out not
according to one, but according to several criteria, and in
a number of cases not precision, but some other criterion plays
a decisive role. This mist also be taken into consideration
in using the matérials cited here.

§5.4, in which the evaluation of the potential accuracy
of Doppler and range-measuring methods of SV measurements on
one pass through the visibility range is given, plays the
role off a model which illustrates the fundamental statements
of the given section.

4.4. The Potential Accuracy,of‘Azimuth'Scale-Rangefﬁ%asurements

Let us apply the relations obtained in Chapter 3 to the

particular case of azimuth scale~range measuring systems.
A system whose antenna device dimensions are small in comparison
with the distance to the SV is usually called an aziimuth-scale
system. If the antenna device consists of several spaced an-
tennas, then not only the dimensions of the individual antennas,
but also the distance between them must satisfy the condition

" mentioned, Because of the relative smallness of the antenna
system, the directions to the SV from its different points can
be considered parallel, and the problem of determining the
spatial location of the SV is reduced to determining the dis-
tance to the source and two of its angular coordinates. If the
observer has sufficiently precise a priori data available, then
it is clear that in the measuring process, instead of defining
the object's coordinates, we will be limited to a location having
a comparatively small .guantity of corrections to the a priori
values of distance and angular coordinates.

Let us set up the problem of evaluating the potential ac-~ /95
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curacy of azimuth scale-range-measuring systems, i.e., the maxi-
mum accuracy which can be obtained by means of an electromag-
netic 51gnal field which is to be recorded in a small area of
space in comparison with the distance to the SV. We will

assume that for the measurements, a field modulated by ampli-
tude and phase whose initial phase is unknown is used. For
simplification of the problem, we will also assume that the an-
tenna has axis symmetry in relation to the dlrectlon to the
field's source.

For the symmetry of an antenna, it
is sufficient to evaluate the accuracy
of defining only one complete angular
coordinate.

We will derive an expression for
the ACF signal second diérivative, assuming
that only two symmetrically positioned
elements not having directivity are in-
cluded in the antenna. We will use Fig.
. 4.2 for this, in which points S and S'
Fig. 4.2. The geo~ - are shown as the reference (a priori)

metric relations in and actual location of the source; points
defining the SV's an- .A] and Ap; are the reference positions
gular coordinates. of the antenna elements; Al and Aﬁfare the

positions in which they appear after com-
pleting the process of taking a bearing;
and rp is the distance from the antenna elements to its axis.
The letter vy designates the angular coordinate of the source;
Ay is the difference between the a priori. and actual values of
the angles; and 00' is the origin of the angular coordinates.

We can see from the figure that the differences of a priori
and true values of distances from the first and second antenna
elements to the S5V can be represented by the formulas

Ary=A4r,+r, AT,}
(4.4.1)

Ary = Arg — r, 4T,

where Ar .1ls the difference between the real and a priori dis-
tancesfrom the center of the antenna to the SV.

The magnitudes Arg and Ay are functions of the definable
corrections to the parameters of motion; therefore, using a
Taylor expansion, we obtain
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(4.4.2)

Consequently, in range—a21muth scale measurements, partial
derivatives of the distance between the correspandlng eélemeénts
of the antenna field and the SV are equal to. the sum or dif-
ference of two values:

ory .. b
0 Fr i

o, 4 og, L (4.4.3)

one of which is the partial derivative of the a priori value
of the distance between the center of the antenna and the SV,
and the other is proportional to the partial derivative of the
a priori valué of the angular coordinate.

Placing these values in (3.3.23) and taking into consider-
- ation that' the ACF second derivative which describes the
measurement process as a whole is equal to the sum of second
derivatives calculated for the different antenna elements,
we w1ll obtain

0L [ s
gr dg,  dg;
re a '
— f_—aT O parar -

: 0 3
—r j g -9l o1

(4.4.4)
Ardt +

L0 or, | |
+ f_;;_”—gik.,‘qzdr)(f oy, Azdr);
-.,-E;:‘, ?r qr- =4 J an .e

In this formula the case is Yepresented where, for range
measurements according to a retransmitted signal, the inguiry
signal of a terrestial transmitter passes the doubled distance
to the 8V at the same time as in measuring the angles the output
effect is determined by the quantity of ordinary differences ("0
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of the distances from the individual antenna elements to the SV.

It is evident that in the transition from a two-element
to a multi-element antenna, we will obtain a formula of the
same structure. In the case of a multi-element interspaced
antenna operation, the spatial integration obtained by deriving
formula (4.4.4):must be completed, which for a linear antenna /87
reduces to integration with coordinate Kp. Moreover, instead
of the power of a signal proportional to the square of the :
‘amplitude, it is necessary to examine the power of a signal comhw
ingﬂto a unit of the cross-section or length of the antenna,

For example, for receiving signals on a flat antenna with
a square aperture, the length of a side of which is equal to D,
for a more informative, third term of formula (IV.4.4), we will
derive the following exXpression : A

o o
‘7 (0) Sjkﬂ T % pzar, (4.4.5)

dg;, dy

‘ J

Here Aé is the flux density of the signal power.
In the case of reception on a circular antenna with dia-
meter D, the third term of formula (4.4.4) assumes the form

- [ ‘
Z (0 :-—E--'D‘1 B2 A A 'Y . o
T ”5 “oq, g, 8% (4.4.6)

These examples show that in passing from a two-element
antenna to a single-element antenna, the composition and logical
value of the terms of formula (4.4.4) do not change, and it is
therefore possible to limit our examination only to this formula.

The first term of formula (4.4.4) d%é¢%ibes the potential
accuracy of measuring the distance from the center of the anten-
na to the SV by using information contained in the envelope;
the third and fifth terms reflect the potential accuracy of
Doppler measurements, and the second and fourth terms consider
the potential accuracy of azimuth scale measurements (the
second term corresponds to measurements with respect to the
envelope, the fourth termy with respect to the carrier fluc-
tuation phase). '

Which deductions allow analyzing the formulas obtained?
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~First of all, we can see that in receiving signals on
a4 comparatively small antenna, the angular coordinates and the
distance from the center of the antenna supply all the infor-
mation about the parameters of motion which can generally be
obtained by means of an electromagnetic field. As is to be
expected, in measuring the distance from the center to the SV,
azimuth secale measurements are totally equivalent to measure-
ments of the distances from each point of the antenna to the
5V. However, it can be seen froem this that azimuth scale
measurements without measuring the length from the center of
the antenna to the SV allow usihg only a part of the informa- /98
tional possibilities of the field. :

It is further possible to conclude that all the components
of formula (4.4.4), responsible for the accuracy of range and
azimuth scale measurements, are analogous in structure to the
formulas for coefficients of normal equations used in processing
range-measuring and azimuth scale data.

We can also see from formula (4.4.4) that the absence of
data about the initial phase of the electromagnetic field
does not have an influence on the potential accuracy of azi-
muth scale measurements. Finally, a characteristic feature
of this formula which must be acknowledged is the absence of
terms representing information about the velocity of -the
angular shift of the objects. As was already noted in the
analysis of formulas (3.3.22) and (3.3.23), this does not mean
that the similar information of formula (4.4.4) is generally
not taken into consideration =- it is ifmplicitly considered.

"4.5. A Model for Realizing the Principle of Optimal Signal
Filtration: The Planetary Radar of the Academy of
Sc1ences of the U. S S.R.

In concluding the description of the.potential possibilities
of different methods for defining the parameters of motion, we
will give a model of a system of orbital measurements in which
the principles of optimal filtration, described in this book,
are basically realized. Planetary radar [1ll] serves as the
model of such a system.

The basic purpose of radar consisted of making the absolute
magnitude of an astronomical unit more precise —-- the impor-
tant constant which is included in the equation for the motion
of the Earth and other planets of the solar system in the form
of a unigue parameter of motion.

The general concept of defining an astronomical unit by
means of radar was included in the selection of a walue for this
magnltude in which the calculated .values of the instantaneous
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Phase lags and Doppler fregquencies of signals deflected from
the'planets were egual to the measured values of these magni-
tudes. A phase method of range measurements on freguency modu-
lation and the Doppler method of measuring radial velocity com-
ponents at the carrier fluctuation frequency were used in
radak. Amplitude manipulating fluctuatlons whose frequen01es
were distinguished by high stability (10~?) served as the sig-
nal, The method of frequency manipulation was also used, but
it was of secondary value. The manipulation frequencies were
close to 4 and 8 Hz.

The magnitude of the co¥rection to the astronomical unit
was judged according to the output effects of a.correlometer
and narrow-band filters; a correlometer was used for discrim-
inating the envelope of the amplitude manipulating signal and
filters at the output of the last frequency conversion circuit
were used for discriminating the carrier.

Methods of receiving and discriminating sigrials used in
radar have a number of characteristics which are technical in
nature,

l. The predicted values of the envelope phase lag and
Doppler shifts of the carrier and efivelope fluctuations were
not fed into the receiving side of the system (for forming a
correlator reference signal), but into the transmitting side --
for forming a transmitting (sounding) signal.

Due to this, selective fixed-tuning filters were success-
fully used for discriminating carrier fluctuations. The fre-
quencies of the tuning filters overlapped the range of expected
values for signal fregquencies after the last frequency con-
version. By means of the filters, the magnitude of the Dop-
pler frequency shift of the signals received was determined.

2, Thé%ﬁossibility of determining and recording the cor-
relation function of the amplitude manipulating signal's en-
velope was provided for in radar. According to the wvalue
of the reference signal phase shift with respect to the sounding
signal in which the output signal of theigerreleometer attains
the maximum, a deduction can be made about.the difference be=
tween the real and predicted values of the received signal's
phase lag with respect to the sounding signal.

3. The received signal's envelope lag with respect to the
sounding signal is determined in a sequential method by means
of repeated reproduction of the receiver's output signal which
was recorded with different values of the reference signal lag.
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Due to storing the received signal, more efficient use of signal
energy at observation was obtained (the lengthy process of
selecting a priori data values closer to the real values was
done after the end of the communication session), and excessive
complication of the analyzer circuit, in which -a parallel
optimal filtration circuit was used, was avoided.

A great deal of more interesting information can be ob-
tained from examining the functional circuitry of planetary
radar. Radar can be divided into three basic component parts.
The first is properly radar with a signal recording system
which acts on the output of the last freguency conversion
circuit. A simplified structural diagram of this part is
shown in Fig. 4.3. The second part of radar inciudes two weak
signal analyzers. A 51mp11fled structural diagram of one of /100

the analyzers is presented in Fig. 4.4. A signal recording
b ‘
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Fig. 3.3. Structural diagram of a planetary radar
receiving-transmitting device.
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Fig. 4.4. Structural dlagram of a plane-
tary radar weak signal analyzer.,
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system, for which a tape recorder is used, is the connecting
link between both parts.

The third component part is a computer, by means of which-
the calculation for predicting.the distance and Doppler correc-
tion and for defining. the astronomical unit is carried out.

The functional circuitry characteristic of radar does not
require any elucidation; therefore, commentary will only con-
cern the analyzer circuitry (Fig. 4.4). There is a switch at
the analyzer's input which controls the reference fluctuations
‘of the manipulation frequency. By means of this switch, multi-
plication operations of the received signal's envelope and the
reference fluctuation are carried out, composirg the first
stage of defining the correlation function. Narrow-band
filters, linear detectors, threshold circuits and recording
devices which simultaneously serve as correlometer integrators,
come after the switch. The duration of integration is 5 minutes,
Signal recording and storage, effective within the limits of
the first and second half-periods of the reference signal, are
carried out separately. The difference in the values of the
output voltages with ‘respect to the first and second half-
periods defines one value of the correlation function. Thus,

a number of correlation function values are recorded, and the
reference signal lag, in which the correlation function attains
its maximum, is defined.

By means of planetary radar, the accuracy of defining an
astronomical unit was increased by more than two orders of
magnitude. Radar alSo allowed the attainment of much more im-
portant scientific information about the planets of the
solar system.
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Chapter 5

POTENTIAL ACCURACY OF. DEFENING DIFFERENT SYSTEMS: OF- PARAMETERS
OF MOTION -

5.1. Content of-the Probleam

As is known, various geometric and kinematic values which
uniquely déscribe the law of motion of a SV (or the position
of the observer) appear as definable parameters of mdtion.
" Derivatives of distance according to the definable parameters
of motion which depend on the cholce of these parameters and
on the coordinate ‘system in which they occur are part of sub-
integral expressions of autocorrelation function second deri-
. vatives. Consequently, the potential accuracy of the complexes
will be a function of these factors.

An investigation of this dependency and the selection of
coordinate systems which ensure high accuyracy of definitions
or a more adequate reflection of the possibilities of measure-
ment complexes, comprise the basic content of the present
chapter.

Before beginning to examine the questions mentioned, it
is appropriate to consider the physical interpretation of the
orbital or navigational (geodetic) measurement process.

The physical picture of the phenomena which take place in
defining the parameters of the SV's motion or in measuring
navigational and geodetic parameters is gquite evidenty It can
be represented in the following manner.

In carrying out measurements by means of a given radio-
engineering system during one pass of an artificial earth
.satellite in the visibility range, we will obtain a set of
the position's planes. 1In the case of range measurements which
describe the potentlal accuracy of determlnlng the 8V's para-
meters of motion, a set of concentric spherical planes whose
center, in observation from Earth, is placed at the point of
the observer's location, is obtained. A fixed set of values
for the received signals' parameters correspond to this set of
positional planes. The measurement process consists of com=-
paring these signal parameter values with the corresponding
a priori reference signal parameter values which are constructed
by means of a priori information about the SV's movement with
respect to the observer. The problemyconsists of the fact thak
judgments must be made :about the difference between the a priori
and real values of the parameters of motion and about the
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actual law of motion of the SV with respect to the differences
between the ajpriori and real values of the signal parameters.

It is evident that the parameters of motion will be defined
more accurately with greater correspondence of the signal para-
meter deviations to the given deviations of the parameters of
motion from their nominal wvalues. In turn, this will occur
first of all in the case where the gradients of the location's
Planes are sufficiently great. However, the problem is not
exhausted by the dependency on the magnitude of the gradients,
as this occurs in normal positicon-finding. If we solve the
navigational problem by defining the position of an airplane
or ship, then it is nece$sary that the angles of intersection
of the different position planes fully satlsfy the defined
conditions.

Analogous conditions must be fulfilled in defining the
spatial position of the 8§V, although at. first glance, the state-
ment about the angles of intersection of the SV's position
planes, whose location changes from measurement to measurement,
does not seem fruitful. In reality, in conditions where there
is sufficiently extensive a priori information, it is possible
to use the assertion about the position plane angles of inter-
section, and this offers the possibility of achieving the
conversion from non-simultanecus measurements of the same
geometric magnitude to défining the SV's position in two- and
three-dimensional space. Due to the use of a priori data,
the results of non-simultanecus measurements can be reduced to
one point in space, and parallelly transferred a priori and
real position planes obtained in the process of measurements
offer the possibility of Jjudging the magnitude of the deviations
between the a priori and actual values of the parameters of
motion. The principle of the SV's movement with respect to
these data can be reproduced more precisely with more favorable
angles of intersection between the position's planes, i.e., the
greater the changes are which the directions normal to the
position plane at the time of measurement undergo.

Finally, sit was shown that accuracy can also be a function
of the choice of a system of coordinates in. which the measure-
ment results are represented. The essence of the glven‘éues—
tion 1s contained in the following.

As experience shows, together with the coordinate systems
in which linear values and their derivatives are used for ex-
pressing the SV's pesition and velocity, coordinate systems
are used in practice in which the SV's position and velocity
are expressed by means of a .combination of linear and angular
magnitudes and their derivatives (a spherical system of co-
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crdinates) or by means of a combination of three angles, time,
linear and .dimensionleéss magnltudes {({Keplerian elements), etc.
In this connection, the dimensionality of the discrete elements?
0f the system of coordinates used cannot coincide with the
dlmens1ona11ty of the electromagnetlc field parameter in which
information about the motion is contained. In the most general
case, the distance, i.e., a linear value, appears, as we know,
as such a parameter. Therefore, in the composition of analytic
expressions which describe the accuracy of defining parameters
of motion in a system whose coordinates are heterogeneous from
the point of view of dimensionality with lengths or their deri-
vatives, it is necessary to consider the coefficients in these
expressions which describe the relationship of the dlmenSlons
of defined and initial magnltudes.

On the other hand, in examining the properties of coordin-
ate systems used for representing the final measurement results,
we will encouhter a dependency of the defined parameters
errors on the magnitudes of these parameters. Errors in defin-
ing the coordinates and velocity of objects in rectangular
Cartesian coordinate systems for selected units of measure-
ments are not functions of the position and velocity of the
SV's movement, and the accuracy of defining parameters of motion
with known units of measurements do not depend on the choice
of coordinate systems. However, if angular cootdinates are
used for representing the SV's position, and angular errors in
defining the coordinates are used instead of linear errors,
then it is obvious that the errors in defining the angles and
angular velocities corresponding to the values of the linear
errors in defining the spatial position and velocity of the SV
will be a function of the position of the 8V relative to the
origin of the coordinates, although it is clear that in the
reverse transition to linear errors, we Wlll naturally ellmlnate
such a dependence.

Such are the initial physical considerations which emerge

when we begin analyzing the potential accuracy of a complex which
measnrcs +ha C‘T'S p:vnma{-avq I'\'F mn+1nh

[oF L]

The complete quantitative characteristics of all the phen-
comena mentioned are given by a matrix of second derivatives of
the signal field autocorrelation function according to the SV's
definable parameters of motion. We will attempt to explain
how these phenomena are guantitatively reflected in forxrmulas
for the second derivatives of the. autocorrelation funection, and
that there is no possibkbility of breaking these formulas down

into component parts correspondlng to the different .stages of
the measurement process.
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5.2, The Dependency of Potential Accuracy. on the Selection. /104
- of. ;Systems of Defined Parameters

Turning to the formula for the second derivative of the
autocorrelation function according to definable paraqeters of
motion : ' .
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where ko = k + ¢'/v ., we will recall that the fundamental dif-
ference of this formula and formulas. £6%. evaluating the poten-
tial accuracy of defining primary parameters lies in the fact
that partial derivatives differing by a unit from the instan-
taneous range between the SV. and the observer with respect to
the defined parameters of motion are included in it.

Derivatives of the instantaneous range according to the
definable parameters of motion can be expressed by derivatives
- of the instantaneous range according to thercoordinate com-
ponents of velocity with respect to some fixed moment of time,
and the derivatives of the coordinates and components of velo-
city according to definable parameters of motion with respect
to the same moment of time.

Geocentric, topocentric rectangular, spherical or cylin-
drical systems can be uséd as coordinate systems in which the
initial conditions are fixed. For determinancy, we will as-
sume that a rectangular topocentric. system of coordinates &,
nr & is used, which can be inertial, Greenwich, meridional,
or any other in their' orientation. ‘

In designating the derivatives of initial coordinates Esn.L
in. time by these same letters with points £, n, ¢, and using :
a generalized notation for the initial values of the coordinates /105
and velocities in a moment of time, to which are related
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the results of defining the parameters of motion £=£i, n=£,, ...,
t=f., we will obtain, for the.partial derivative of the range
with respect to definable parameters of motion, . the .foldowing
relation:

()sk
- [ 5:1. 2, “any 6.
a‘?z Ea,k oq; _ _ \ (5.2.2)

Consequently, the products of the partial derlvatlves
will be expressed by the functions :
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The second derivatives of the range according to the defin-
able parameters of motion:.can be represented by means of the
following formulas:
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Derlvatlves §£, /8q; are not functions of time and spdtial
variables by which 1ntegratlon into formula {5.2.l1) is effected.
Therefore, the expression for the . second derivative of the
autocorrelation function can be written in the form
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We should note that the terms in the ‘subintegral ex-
Pressions which represent the first derivatives of the signal
amplitude usually approach zerc, since the signals actually
used, as a rule, have a symmetrical form. Taking this into
account, the formulas for the second derivatives of the ACF
acquire the following form:

O)_QEE d:;i oq, ‘?

[S‘f or or w«
Bl =] / VT dEk 65[
X (o AA — 12 a2V avar 4L ([ [ 90 a0
X 2 += Ak, a'vat)x
9 2 ’
><(Hﬁ & Atk gl )] t | (5.2.6)
v oY d;i i

Formula (5.2.6) is.one of the elementé.df“the ACF gecond

derivatives matrix of maximum values. Using vector symbolics

similar to what was done in §3.4, it is possible to write the
entire set of elements for this matrix. For this, we must
construct the matrix analogs of formulas (5.2.2) and (5.2.3).
Forming the matrix analogs of these formulas is done in the
following way. We insert a vector row of the partial deri-
vatives of the instantaneous range to the 8V according to

the initial values of’ the coordinates and components of
velocity:

d_c.;”_‘ér o _or o o e |
: dg . 621 dEg dEg 054 le;, 055 ) (5 2 7)

We must emphasize that the letters EI,E de51gnate the
coordinates and components of the svV's veloc1ty with respect
to a fixed moment in time, to which the,results of defining
parameters of motion g are related, It is also 1mportant to
keep in mind that no restrictions are placed on sehectlng the
position of the orlgln and orientation of the axes of the co-
ordinate system in which the initial values of the coordinates
and velocity are represented. With respect to considerations
discussed somewhat later, we will also assume that this is a
system of Cartesian coordinates.

The vector row of partial derivatives of distance with
respect to definable parameters of motion is connected to
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vector row (5.2.7) by the relation

el —

ar  dr 9E  or
Jdq ~ F dq EE‘Jaq’ : (5.2.8)

where

---------

%o il (5.2.9)
a9, aq, :

is the Jacobi matrix of transition from initial conditicns £
to parameters of motion g with respect to the moment of defin-
ing the parameters of motion.

The matfix of the products of thehlnstantaneous range

partial derivatives with respect to the definable parameters
of motion assumeg the form

ey T [ _
aq @qnﬁ“[d_ﬁ] d5 “Ea " (5.2.10)

Consequéntly, the matrices of maximum values for the ACF second
derivatives with respect to the definable parameters of motion.
and the initial conditions are interconnected by the relation
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Finally, using the vector notation adopted in §3.4, it. is
also possible to represent the last formula in the follow1ng

form: |
1 raxls ax /1 |
Z:{0)=2 _e[—] xx“‘-m(—AA”——k? Az) dvdtf
. a__) \[l 3 L | v?gr e ] \
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!.—I
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1 ox
)X ekt dv‘”) (5.2.13)

Here, X is the radius vector of the SV given in some topocen—
tric system of coordinates.

, Formulas (5.2.6) and (5.2.11) describe the potential
accuracy of defining parameters g with measurements during time
T by means of a three-dimensiocnal antenna occupying area of
space V,

These formulas are very interesting since they reflect
the effect of the autocorrelation function on.the second deri-
Vatives, and ceonsequently on the accuracy of measuring two
groups of factors which substantlally differ according to
content,

Factors which are a function of the properties and poten=-
tials of radio-engineering facilities and of measurement con-
ditions are related to the first. group. The second group con-
sists of factors purely geometric in nature, connected with
the properties of coordinate systems used for representing the
measurement results.

The effect: '0f the first group's factors is represented by
quadruple 1ntegrals, calculated with respect to the area of _
space occupied by the receiving antennas during the measurements.

" These integrals take into account the intensity, fregquency or
width of the signals,. the dimensions and position of the antenna
systems, the form, length and position of .the measured tra-
jectory segment with respect to the ground facilities.

The integrals are also a function of the properties of the
coordinate system 0&Enz, by means. of which the defined initial
conditions are represented, and.of the position of the origin
and orientation of these coordinate axes. In this connection,
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measurement conditions are .calculdted by the partial deri-
vatives which represent the projection of distance gradients
- on axis £, n, ¢ at different moments of time and the mag-

nitudes related to them -- the corresponding partial derivatives

of the distance with respect to velocity.

The guantitative reflection 8f£ithe effect of the second
group's factors are included in the properties of the second
derivatives of the initial .conditions according to definable
parameters of motion. These partial derivatives represent the
connection between the initial conditions and the definable
- parameters of motion at the same moment of time and describe
only the process of coordinate . transformatlons in the trans-
ition from a system of coordinates in which the initial con-
ditions are given to a system of coordinates in which the
definable parameters of motion are represented.

We can see from the formulas shown that the ACF signal
field second derivatives with respect to defined parameters
of motion, generally speaking, @re functions not only of the
properties of the electromagnetic field and the measurement
conditions (i.e., of the form and relative position of
the measured trajectory segment with respect to the antenna
field), but also of the geometric properties of the mag-
nitudes used for expressing the definable parameters of motion.

Not discussing here the details of the question of coord-
inate transformations, to which Chapter 6 is devoted, we will
emphasize the apparent conditional character of this function.
The reasons for the appearance of such.a seemingly unusual
function consist of the following.

The accuracy of defining an object's spatial position is
described by the distance between two points, one of which
‘corresponds to the real and the other to the erroneously found
position. If geometrical magnitudes having such a property
that the distance expressed by means of them is shown as a
function of the object's position in space are used for re-
presenting this distance, then errors in defining the para-
meters of motion, meaning the signal field ACF second deriva-
tives with respect to the parameters of motion represented by
these geometric values, will also be a function of the para-
meters of motion used. And on the contrary, if magnitudes
which allow expressing the distance by a relation which is not
a function~6§ these parameters are used as the parameters of
motion, then a similar function will not be characteristic of
errors in defining the parameters of motion.
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This phenomenon in itself does not result in a decrease
in accuracy to which the fact attests that, in the transition
- from parameters of motion in which the indicated property is
inherent to a Cartesian system of coordinates lacking
this property, the dependence of the errors on the position of
the SV disappears. However, as we know, the SV's orbits are
not always given by the initial conditions in Cartesian coor-
dinates.

Moreover, separate inspection of all the mechanisms for
the origin of errors is difficult, and only the final wvalues
of errors in defining the parameters of motion are usually of
”1nterest. In these condltlons, an increase in the numerlcal
values of the errors in defining some components of the posi-
tion vector in the transition from one point in space to another /110
can be assigned due to the 1mperfectlon of the measurlng sys-
tems. Therefore, experiments in perfecting a measuring complex,
for example, by means of increasing the signal energy, can be
undertaken. Meanwhile, it is obvious that similar efforts are
appropriate only if it is certain that the undesirable depen-
dence of the accuracy on the position of the SV is not connected
with the properties of the coordinate systems. 1In order to find
such a certainty, it is necessary to express the complex
errors in linear values, i.e., to recalculate the accuracy
evaluation results in a Cartesian system of coordinates, and
only by analyzing the errors in this system is it possible to
make a really correct judgment about the necessity of per-
fecting the complex's measuring agents or changing the posi-
tion of its elements on the Earth's surface.

Such is the essence of the guestion concerning the ch01ce“
of a &y&glem: of definable parameters of motion.

5.3. Some Properties of Coordinate Transformations.

Correlation matrices which describe the minimally attain-
able values of errors in defining parameters of motion are
related to the maximum values of the ACF second derivatives by
the formula

B~ =B ! —-% Eu_
B A0

b

(5.3.1)

which results from relations (3.2.15) and (5.2.11).

The last component of this formula is a matrix, an in-
verse correlation matrix of minimally attainable values for
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measurement errors B . Conseguently,
m

B Do _ ! '
2 ME/(Ngt E)
- .k .

(5.3.2)

SO gy /

It is also possible to write the last matrix in the following
manner: :

s
3

B M 1 g 25 0) e o]

) DENIREY m) (5.3.3)

- Here, the symbol det designates the determinant, and the
sign * designates a matrix adjoined to the given matrix.

From the formulas derived, it is seen that the accuracy
in defining the parameters of motion is a function both of the
properties of the ACF. second derivative matrix according to
the topocentric coordinates, and also of the Jacobian of the
properties of coordinate transformations. leading from the topo-
centric coordinates to final values, by means of which the
definable parameters. of motion are described.

It also follows from this formula that in transforming the

coordinates, the volume of the correlation ellipsoid, generally

speaking, changes. The volume remains unchanged only for co-
ordinate transformations for which the Jacobian of the trans-
formation is equal to + 1. Similar transférmations, as we
know, are executed by the transition from one orthogonal base
to another, alsoc orthogonal, base. However, in those cases
where one of the bases -- the initial or final one -- is non-
orthogonal, the correlation ellipsoid is deformed in the pro-
cess of transforming the coordinates. Therefore, the Jacobian
ofthe transformation can show a difference of one, either bes&"
cause of the difference in the physical ‘dimensions of the
initial and final coordinates, or because of the geometric
‘pecularities of the coordinate systems, about. which we have
already spoken, and which consist of the fact that the same
value of the linear error for the representation by means of
these coordinates is shown as a function of the object's posi-
tion. It is further obvious that.at those pgints in which

the Jacobian of the transformation has properties (approach-
ing zero), the measurement errors increase, approaching in-
finity.. '
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Finally, we can conclude from. examining COXrE ion matrix
(5.3.3) that the matrix rank of the ACF second derivatives,
along the vector of parameters ¢, does not exceed the rank of
the Jacobian of the transformation matrix and. the rank of the
initial second derivative matrix. With an ordinary Jacobian
of the transformation matrix, it will be equal to the rank of
the ACF second derivative matrix according to the topocentric
‘epordinates. . Consequently, the dimensions of the vector of
defined .parameters of motion g {dimensions in the sense of the
guantity of vector components) cannot exceed the dimensions of
the topocentric coordinate vector &ﬁ this means that the deter-
minant of the ACF second derivative matrix will be equal to
zero with respect to defined parameters g if the dimensions of
the topocentric coordinate vector and their derivatives §
are less than the dimensions of the definable parameters vector

d.

5.4. A Rough Estimate of the .Potential Accuracy in'Deﬁihihg
the Parameters of Motion of'Narrow—Orbit'SVS fOr“Range

Visibility Range

In this section, an example is given for using methods of
evaluating . the potential accuracy of measuring agents, dis-
cussed in the third and.fourth chapters, for scolving a prac-
tical problem. The materials in..the section allow us to clear-
ly demonstrate the basic properties and different aspects of
range-measuring and.Doppler methods and offer the possibility
of examining the .question concerning the . informativeness of
various segments of the SV's measured trajectory segments.

For solving the problem,the} basic results of the fifth
chapter are also taken into consideration: the definable
parameters of motion are .chosen in. such a way that the undesir-
able effect of coordinate transfdrmations are excluded. The
rectangular coordinates of the .SV at.the moment of flight at
the trajectory point least removed from the obhserver appear as
the definable parameters of motion. This point is called the
traverse of the observer, '

The problem conzists of evaluating the potential accuracy
of the determinants of the indicated.coordihé¢es, i.e., cal-
culating a maximum value matrix for the ACF 'second derivatives
and a correlation matrix.of minimally attainable error values.

Solving the given problem in a.general form, i.e., with
any principle of 8V movement, is difficult. "Therefore, we
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will limit ourselyes to examining the simplest principle of the
SV's movement which will allow .obtaining results in a final
form. We will assume. that the satellite moves with constant
velodity v along a rectilinear trajectory and that the length
of the trajectory segment to be measured is equal to 2vT, where
2T is the total measurement time.

It should.be noted that a linear approximation of the
measured trajectory segment is not always permissible. It can
be used. if the altitude of the SV's trajectory over the Earth
is comparatively low, since the energy conditions for low
orbits are more favorable .at the receiving point for a flight
on the close traverse segment of a trajectory of comparative-
ly small length, which can be approximated by .a segment of a
straight line. It i1s easy to calculate that the energy of the
signals received from the SV, available in the visibility
range, are some ten times less than the power of signals ,
received from the 8V at the moment of traverse flight. /113

Finally, we will assume that the signal phase fluctuation
correlation is egual to the duration of the measurements and
signal reception is done on.a non-directional antenna.

The important question in the problem to be solved is
that of selecting values which are considered invariable in
the measuring -conditions. Usually, such values are the power
of the signal to be.received and the spectral density of the
noise at the radio recelver's 1nput Experience. shows that
such a choice of fixed values is more rational for estlmatlng
the signal's parameters. However, for solving the problem
according to an estimate of the orbit parameters, or the coofr
dinates of the obsexrver, or other parameters together with
those taken, fixing the signal's energy complicates the com-—
parison of different methods of measurement, since the power of
‘the received signal 1sra function not only of the transmission
energy, the area of the receiving antenna and the duration of
the measurements, but also of the orbit parameters and the
observer's position with respect to the measured trajectory
segment. Therefore, in the given.problem, fixing the energy
or power of the .transmitting signal, the area of the receiving
antenna and the spectral neoise density are more advisable. In
setting the.energy characteristics of the emitted signal,
we will .cbtain complete identity of the conditions 1n which the
different measurements methods are compared.

In this .connection, a separate. examination of two cases
is sensible: where the power of the emitted signal and the
duration of the measurements (i.e., the energy of the emission
ig fixed) or only the power of the emission is fixed. Fixing

96



the power of emission offers. us . the possibility of studying

the potential possibilities of the measuring systems for
measuring during the entire time.of the SV's period in the
visibility range and. computlng not only the negative, but alsc
the positive results of an .increase in the SV's flight altitude.
Subsequently, an assumption about .the constancy of the emission
energy 1is essential. Turning to the duration of measurements
on one pass to infinity, we will obtain the possibility of
estimating the accuracy of measurements during the entire

time of the SV's stay in the visibility range.

We will first assume that the phase method of -
measuring distance in frequency modulation is used, and ‘that
the information contained.in the signal amplitude is not direct-
ly used.

We will limit our examination of the médsuring process
only to the most exact scale and will assume that elimination
of ambiguities will be attained because .of measurements on
several "crude" scales and that, consequently, the tetal™ i
energy expended .in the measuring process will several tlmes_ /114
exceed the energy expenditures .on an exact scale,

It is evident that the square of the signal amplitude
at the receiving point is connected with the energy of
emisgsion P, antenna area S and instantaneous range r{t) by
the function ' '

A2 = PSA=r (1),

Since an assumption was made about the fact that the
object moves according to a rectilinear trajectory, then for
measurements during an artificial earth satellite's passage
through the visibility range, the definition of three coord-
inates and three components of velocity is shown to be im-
possible, Actually, the position's planes, whose effect, as
usual, is revealed in a generalized manner, intersect in this
case not at the point, but along the circumference of the plane
located in the traverse. . The result of this is that the
matrix determinants of the ACF second derivatives equal zero.
Accordlng to the distance measurement results in one pass, it
1s 90351ble to define only two coordinates and two components
. “théspace.vehicle's velocity .for a rectilinear approximation
of the trajectory. In view of this, it is advisable to present
the SV's principle of movement in the following form, taklng
into dccount the assumptions adopted:
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where §, n are thé‘sv coordinates: .in the moment of time t=0.

The instantaneoﬁs.range between .the SV and the observer
can also be represented in the form ¢f a function
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vy is the radial velocity component at the moment of beginning
the time count.

Greater simplicity and clearer representation are attain-
ed if the measurements are begun at the moment of traverse
flight in the case where the distance between the SV and the
observer reaches .the minimum. At.this moment, v, = 0, and
.the instantaneous. range is. expressed by the formula r =.
/oZ¥V2te? where p is the traverse distance.

The partial derivatives according to.defined coordinates /115
£, n and components of velocity Vgs Vp are expressed by the
following formulas:

dr _E dr_ . i
& r° aq r |
ar ____E,t or ot
dvg - r d’l.‘n _mr - (5.4.1)

The elements of the ACF second derivative matrix according
to deflnable parameters are computed in the following manner:

....... ) T
)2 » E t?
Z () QpS j E4 o 8) it

o 4-:"0 ‘gr r

(5.4.2)
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Deriving the correspondlng calculations and inserting
the notations

K_:;n?rlzp‘),ul“?%r,x_ru? P1

——

for the case where measurements are begun in the traverse, we
will obtain the formula

T
x2
2(5ndgx4— ) ]_ (5.4.3)
‘ p 1—{-J¢'2
. ] I
T v ;
— &
v? v
o TE
Fig. 5.1.

The Ve1001ty vector
and its components in the topo-

centric coordinate system used
Turning to Fig.

5.1, in which the geometric relations are
represented which take place at the momént of traverse flight,
and taking into consideration that

v {v=cos «, E&fp=sin a,

v, [v=sin&, 7/p=cosa,
- . .

(5.4.4)

where o is the angle betwegp.the.direction to the traverse
point and axis n, and alsofidefining

"~
|_I
|-l
(=2}

——

—_—

dr(_tg.x ——JL/(I +,x?j.__fl (x) arctgx—|—-x/(l - ~\‘3)——fe(-‘~’)J

{(5.4.5)
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we obtain .the possibility.of writing the computed second deri-
vative in the following form:

z;, (0)= Z[ﬁéwm%%ﬁﬂﬂﬁﬁm+£;ﬁm%}

ol _ i

(5.4.6)

Taking into consideration that the formulas for the ACF
second derivatives according to coordinates £ and n are analo-
gous in structure, it is possible to write

5‘"2“]} (5.4.7)

= R

Z, (O = f, (x) hmﬁa—|—f {x) cous? a+

Passing to the calculation of the ACF second derivatives
with respect to.the velocity components, we obtain the following
relations:

| T )
L #g . ’
%uwufﬁTM:%ﬁﬁMmﬂw
0 -

+| | sin 2 A osta (5.4.8)

where

(5.4.9)

X2
fﬁ(x).—x+2 1+ 2

By analogy, we have

Z, o ()= —2“5{1‘1 (x) cos2a4- [Iog(l—l—x?) — lfxz] sin2a- f

W Yy

+- f3 (JC) Siﬂga} , . g e a} (5.4@10)
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Ziu =27, (0)=

— _ Xx?
wgl[u arctg x) sin 23 + log (1 4 x )_I+ﬂ]' (5.4.11)

- % ([ - x?
Zi, (O)SW{[logu-H)_m o

]cosﬂa-+

.,
[
|_l
~J

|

4 fp(x) sin 2&—}—1_::;2 s_in:?a} . (5.4.12)

’ _.I* ' cxt 7
Z’?”TJ O —«—2}7{[1«:@(] + x%)— l‘l“xg]. sin?e +

+ﬂﬂxsmzm+mecm’}, (5.4.13)

[[IU‘T(H ~9)] —-sm Ql-i-fz (—’C)} %5’4-14)

Z =7, 0=

@) =2 0=

. . x2
arctg x) sin 2a .
?rm | {arctg x) s +1+x2] (5.4.15)
Thus, all elements of the matrix of ACF.signal second
derivative maximum values with respect to the components of

coordinates and velocity have been computed.

Since the relation takes place

CoT r -r
) fdt=] fhat— | fuar,

0 ]

(5.4.16)

then for the symmetry cf the measured segment of the . trajectory,
the matrix of ACF second derivatives is reduced to the form of
(5.4.17). It is interesting that with o=0, a=45° and a= 90°,
respectively, the first and fourth, first and second, second
and third columns of matrix. .(5.4.17) become proportional to
each other. 'This attests to the fact that in the cases men-
tioned, the transformation.of. the given matrix, meaning the
definition of both coordinates and both components of velocity,
becomes impossible.

In-theAcases cited, only three of the four definable
values are successfully defined. Let.us examine, in particular,
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the case where a=0 and calculate the. correlation matrix of
errors in defining the cooxrdinates. and. vector velocity modulus
for this case.

The initial matrix of second derivatives in the given
case is in the form of (5.4.18):

f 1 1 . . i
P—ﬂ-[f1 (x) cosZa - p;arctg Xx-sin 2a f‘—:}f—) sin 2a Ff' (X) /118
+h(x) sin?a]
i . 1
;—T-)- arctg x sin 2a FE [fi(x)sin 2e-F T,]_zf‘ (x) f’—;:—} sin 2a
- fz (x) cos ?a]
o fix) . AW b - o
270 =x o sin 2z "rv"z" " [fi(x)sin?a-}- ey 5in 2a X
~+ f2 (x) cos 2a] X (X — arctg x)
: f‘rfj—‘:) J—clé'-;-c—)—sin 2a @—Z-(.«f——ar.ctgx)x w%[fj(x) cos?a -
: X sin 2z ~+ f3 (x)sin?a]
(5.4.175
T T
1
— fi{x) 0 0
pY /119

z7@=+| 0 p%fz(ﬂ«f) i)

f !
0 ?ﬂm Jﬁu) (5.4,18)
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The error measitirement correlation matrix is related to
the ACF. second derivative matrices by relation (3.1.16)
which, in the absence of a priori data, results in the form

Nﬂ i —1
B::ﬂbun==——§12 O], (5.4.19)

where Ny is the spectral noise density.

Thus, the elements of the second derivative corfelation
matrix are expressed by a formula in the form

N, 12, 01
biy=—5 detZ”«n

where [ZY:(0)]* is the signed minor of the corresponding ele-
ment; de%lz“(o).is the determinant of the second derivative
matrix which is equal to the following magnitude:

det Z"{0) = z, (2 75 — 253)- J
- {(5.4.20)

Using the formulas derived, we obtain the following
expressions for the elements of the correlation matrix:

~LA o2 : 7 -
_ VaUgr
2 J o (5.4.21)
where
4R 2eN |
....:.E’Qr ,
by 7,07 P% puf, (x) ’ (5.4.22)
) A =1f, (] ‘ (5.4.23)
where B o
L £
f‘(“)”{f"("’[l fa(-’c)f(x)]} ' (5.4.24)
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where

where

33

2nN, 2, 28
= TR fo ),

| N— . N

Am=hmb-

—_—

b12=0, b;3=0, bgy —

ﬂkﬁzUﬂﬂH—Jﬂﬂﬁ&%ﬁMM”-!

L
:f2(x)f3 (x) ,

2=V, w?g r,
C omrRIPS

|

212 (%),

the coordinates and velocity has the following form:
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vy (X) 0

0

QTTJ'VU 'ng
_ ; g 2 f
0 v fr(x) (v¥p)felx) |
Table 5.1
x 0.1 .25 050 0.7 1.0
5 6.588-10~* 9.684-10~% 6.365-107% 0,1635 0.26854
fa 0.1987 0, 4803 078636 1324 1.285
fa 3,944.16~% 3.581.107 0,087.107° Eyuur? 0,1438
£ 1518 |103.2 15,71 6,116 3,504
£ 11,28 4,579 2.402 1,714 1,390
£y 5,684 10" 6l41  [220.0 35.91 12,43
fi 1885 | —193.8  {—16.88  [—7.662 —2,760)

(5;4.25)

(5.4.26)

(5.4.27)

{5.4.28)

In this way, the correlation matrix of errors in defining

(5.4.29)
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The values of functions fl (x)E f.7(x) for -a number of
values of the argument are shown in Table 5.1, and the graphs
of these functions are given in Figs. 5.2. and 5.3. 'In ex-
treme cases where the length.of the measured segment becomes

sufficiently large, the correlation matrix of errors takes the
form C -

2r-tpo 0 0"
2=N. ol 0 2=—Tov -— 0¥ (2x)!
lm 8 = —T*(;'Tig
X o m2 Py : o p?
: 0 —v(2x) — =
_ 2ex 2T
- _— - (5.4.30)
We will sum up the computations and form some basic

conclusions.

) ) =g

Fx) A i :
T Al %00 N ,
.5 |2 e W Il 26.0 (-l NEEN )
o *3 8.0 B = —
$) 4 = —
[f‘g '\.\_ =
.Q,S y T} 2;0 ™ - ‘\\\
' 0 = T 1]
ae sl 5. e
| -~ 1
Y/ éts g %4 |
’ | ) g 7 40 50
18z o408 10 2 ’ Wz
%f _ég !0 [ra q%; L ERL B ‘=.".‘5'b _ﬁ:i (‘é"' o .

Fig.5.2. Graph of Fig. 5.3. Graph of

functions £ (x)¥ functions. £, (x)2f, (x)
£4(x), £g(x). ! [

2.0 3{,0 5.0 10 o
0.7071 094490 1,181 1.372 PR
1,507 540 1,566 1.570 7-1;
1,079 9553 6,072 15.68 9v 1,57
1,414 1,054 0.8467 0,7283 0nt
00583 | 0,8360 0.748% 0,6896 951
1330 djmg ojam 6,003 ty? (2!
| o.sess | —0,mus —0,1456 60021077 | — (24)"!
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First of all, it. is necessary to note that the érror dis-
pPersions in defining the topocentric. coordinates and velocity
are directly proportional to the spectral noise density and
inversely proportional to the power of the signal transmitted
by the on-board transmitter, to the square of percentage modu=
lation and the square of the frequency to.which the position’s
Planes are assigned.

The errors in defining the coordinates are proportional, /122
moreover, to the velocity and traverse distance and are func-
tions of the relation between the length of the measured tra-
jectory segment .and the traverse distance.

If the length of the measured segment is long, the
errcrs in defining the SV's position in the trajectory exceed
the errors in defining the traverse distance; however, where the
length of the measured segment is sufficiently great, eguali-
#Zation of the component errors of measurement takes place, and
the error ellipse turns into a circle.

Errors in defining the velocity are directly proportional
to the square of: the velocity modulus, inversely proportional
to the duration of the measurements, and depend on the relation-
ship between the length of the measured trajectory segment
and the traverse distance.

'The‘correlation matrices (5.4.29) and . (5.4.30) describe
the potential accuracy of the phase rangeumethod-of defining the
coordinates and velocity of the SV.  We will now calculate
the correlatlon matrix of errors with the Doppler method of
measuring.

The elements of the ACF signal second derivative matrix
with Doppler measurements are expressed by the formulas

;
. R or or L,
£y O=—5 5‘ dg; O A

T T
+ ff.(f 3” A’dt)[f g’ ‘AQa’f).
4=.E ¥ -ql’. \—T qj | . /

[

(5.4.31)

Using these, with symmetry of the measured
. derdvevthe. following relations: Segment, we
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23 (0) _—*‘zge (0) _-—-_;;’-f, (x), | | / m-. l_‘ -_._} .

(1 4 x?)arctg x

( X 2
: arcsh x — ——e—e—-

Vi+ x’) _
Z"“,(O) [fs (X)—2 arcig x -

952 1 L
Z;,, )= [f( )~ j:;iﬁf S N L

*yp ‘ s
=12 (3, [ (5.4.38)

YA () _0 7 (O) =0,

. M _ 2x 3 — a =
Z[w(o) = ;;[fl (x) 1'/1_:'{_‘_}2 arctg x ( ?erh * ]/1+x2 )]
fm(x) J | '_'*«;(‘335.4.34)

where xj = -k2pPS/8m.

- . Elements of the error correlation matrix .are represented
by the following formulas: E

4=N
b“l-kﬂp?r@fi(x) (5.4.35)
i
122 dﬂPSP v/ (x), (5.4.36)
where IR -
Filx) -
fu(x)—{fﬂ(x)[ m}} B (5.4.37)
T N, v B
‘ b133—-“k2P50, 7f:2 [ (5'4°38)-
where ' [
| ‘ (5.4.39)

fi (%) )}“ :

fld(‘x)z{fg(x)[l_ fB(x)fE](x) ‘

l
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where

Thus,

form:

fra(x) = lfm(x) [‘"‘ AN

By =

4= N, - ‘ ’
b ga= — k“:PS V2 fialx),
) — {5.4.40)

fs (%) fo (x)“" \ (5.4.41) -

the error correlation matrix obtains the following

wufin) 0 0
:: g § 0 P?jﬁ () =’v.2f.3 {x)
0 v fis (X)) vrprfia(x)
- . o o (5.4.42)

The values of functions fg(x)+f33(x) are given in Table
5.2, and the graphs of functions f,(x}, f11(x)+£f13(x) are re-

presented in Fig. 5.4.
. Fio) , 7 12 The chief characteristic of
HQ§<¥ the Doppler method.error cor- /124
AR e relation matrix (5.4.42) lies in
L \\\ the fact that the dependence of the
L 10 N @m;\tka exrror dlsper31on in defining the SV's
: \\k NINGET] position in. the trajectory on the
7 N U length of the measured segment is
T N identical. with the corresponding
4o dependence of the range-measuring
Yy i method, although the dispersions
Y 25 10 520 z themselves, other conditions being
n T _e?ual differ from each other by
Fig. 5.4. Graph of 0%/w? times. As for errors in
functions f,(x}, defining the traverse distance and
fll(x)%fl3(x). velocity, they differ from errors in
defining these values by the range-
measuring method not only by size, /125

but also by the nature of the dependence on the length of the
measured segment

108 h‘—
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Table 5.2

x 01 0,25 n.50 0,73 1,0 20 30 5.0 n -
fu 4.365-1077 | 3.888. 103 9.234.1077 4.622. 1073 1216- ]0_? 6,200 102 0.1079 | 0,1655 | 0,2241 (27:)-«1 (=2 —8)
e et - - ) s
3z -
fo 1,754-107% [ 1,596-107% 4,071 1079 2,253.1072 6,647-107%  0,5337 1,342 | 3,489 [10.23 24 — - — —~ (arsp )
i |-8748.1077)-7.878- 1075 1,939.107 —1.020.107%|—2.839107 —0.1802 | 0,372 —0,7207 |—1.,338 = —arshx
12 1318 [103.2 15,71 6,116 3,504 {414 1.056 | 0.8467 | 0,7288 91
Fu 4.872.1010 | 1,638-100 | 4,852.108 [ 2,220-10¢ | 3,197-10¢ || 582,6 212.8 60,20 20,33 9z (=3 — §)7)
fo 1 1,213000 | 3,989-105 | 1,101-108 | 4554100 1 5847 | 102,5 17,2 | 2,859 | 04454 (2x)!
S 2. 431-1010 | 8,083.100 | 2.311-100 | 1,005.10% | 1,363-10¢ || 208,1 59,03 | 12,49 2,650 A (st B) arsh x
' L
fu ‘3_,571- 104 1.891.104 1421 369,90 1511_56 30,35 15.95 8.974 5,490 (=% —- 8) )
Jis 146,1  [294.9 60,32 34,21 21,69 8,750 5810 | 3.840 | 2,540 |
o1 e | o ; Tarix
f]g 3591 2532 370.0 133,2 70,33 21 178 N 13.78 9249 6639 9 -:l'S Sx
i N : ™ —




the range—measurlng method are always less than the errors in
defining the SV's position. in the trajectory, and their equal-
ity approaches. the limit only with x - «. In. the .case of the
Doppler method, errors . in defining .the traverse'distance are
always greater than errors in defining the SV's position in
the trajectory. The .relations. of the mean square errors in
defining the coordinates and velocity by Doppler and range-
measuring methods are correspondingly equal to

(m2f) fua, (MR friy (20) fis |

The functions f,—VFnJe, fu= VTl f,,;CVJf"T;fF'J
tra~

are shown in Table 5.2. If the length of thé Teasurac
jectory segment approaches infinity, then the limit of error
correlation matrix (5.4.42) is the matrix

2 po 0 0
T
4= N 2r 4arshx
= O (4 i »

ilillB B2ps 2 -8 3 (ﬁz —_ 8) X
4arshx _, o %
#—8)c Sex _ oT

, (5.4.43) /126

which, in the nature of the functions, is not very different from
matrix (5.4.30). Matrices (5.4.43) and (5.4.30) basically dif-
fer in the error dispersions in defining the traverse distance.

5.5. Concerning the Informatlveness of Different Trajectory

Segments

In analyzing the results of the research presented in the
previous section, it is possible to express some considerations
about the informativeness of the dlfferent sections of the
measured trajectory segments.

It is obvious that the specific increase in information
about the parameters of motion which appears in different
sections of the measured trajectory segment of the SV must | -
differ. ‘Energy conditions at the moment of measurement, the
velocity of. the angular change of the gradient to the planes
of the position, and the position.of the observer with respect
to the measured segment exert. an influence .on the magnitude of
110 -



the. increase; .evidently. In. view of the complexity of the
phgn@mena} we must make .a special examination of this.guestion.

For obtaining a sufficiently. clear picture of the pheno-
mena.in the analysis, we must eliminate the -influence of the
‘coordinate transformations and, namely, according to this
principle, the coordinates.and components of veloecity in a
rectangular system of coordlnates are .chosen as the definable
parameters.

The first question which must be answered before we begin
to examine the problem of evaluating the informativeness of
the measurements is that which concerns which value should
be ‘accepted .as the informativeness measure of one or another
section of trajectory. At first glance, it seems that the most
reasonable measure is a value which shows how much the errors
in defining some parameter of motion decrease in measuring a
segment of unit length. However, such a measure proves to be
practically unsuitable, for two reasons. First, it is unsuit-
able in that it does not satisfy the condition of additivity,
which this type of measure must obviously satisfy.

Let us explain what this 1mp11es. It would be desirable
if.:: the informativeness measure were increasing functions of
the length ©of the section and if the measure of informativeness
of two sections were equal to the sumd¢ef the informativeness
measures of each of them.

If a value proportional to a decrease in the measurement
error dispersion in a section of unit length is chosen as the - /127
informativeness measure, then .such a measure will not satisfy
the condition of additivity.

Another shortcoming of the measure examined consists of
the fact that it involves the necessity of choosing an infinite-
ly large value as the dispersion origin. Actially, with respect
to the degree of shortening the measured segment, the errors
increase, approaching infinity. The choice of .such an origin .
is connected with great drawbacks: the dispersions diminish
to values large in magnitude, which attests to the efficient
functioning of the system; at the same time, intolerably
large absolute. values of the measurement errors correspond,
because in subtracting a large but .finite value from the
infinitely large value, we will obtain, as usual, a value which
deseribes the increase in the measurement accuracy on a section
of trajectory of unit length. »
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Thus, evaluating the. informativeness of a trajectory
segment by decrea51ng the error dispersion on it.is shown to
be lmpractlcal It is evident that a wvalue which describes
an increase’ in measurement. accuracy on a trajectory segment of
unit length can serve as a more advantageous measure of
informativeness.

The increase in accuracy can be estimated by the increase
in the value of inverse measurement error dispersion to a
unit segment, i. €.y by an increase of ‘the value of matrix
elements

I 2 B B
TR\=— Nk ().
%" N, - No+;Ek )

In the case of signals whose correlation interval of
initial phase fluctuations are sufficiently_ high, it is possible
to take the increase of the value -Zgl{O)N 0 as a convenient
measure, or simply the value

d

- ;}_;' Zi"g {0),

which we will: designate by the letters Iy These measures satis-
fy the condition of additivity, and the orlgln of each of them
coincides with zero. Thus, it is practical to examine a deri-
vative accordlng to the length of the measured trajectory segment
from the maximum value of the ACF .second derivative with respect
to a definable parameter as the informativeness measure of the
given trajectory section.

-Using'thE'measure'introduced, we'will,evaluaté the
informativeness of different segments of the 5V's trajectory
according. to their relation to different parameters of motion.

Determining. the S§V's Position .in the Trajectory

The potential accuracy of defining coordinate .y, which
describes ‘the position of the SV in the trajectory, is evaluated
by the maximum value of the ACF second derivative with respect
to this coordinate which is. identical in form both for range-
measuring .and Doppler methods.

The 1n£ormat1veness of different trajectory segments in
adéflning “this coordinate is. described by the magnltude
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Fom O o v 0 e (5.5.1)
__ X ox e (0) £t (%) = X'(l—]— 2)
where y;=x/pv.
Table 5.3
x 0 (R3] 1.0 20 3:?&0 5,0 10,0

e 0 032 |0,50|032|0.18|007| 0,02
f2 () 2.00 | 1,27 0,50 |0.08|0,02]|0,003 0,00
f2(x) V) 0.04 (025|064 |081|092] 1,00

e (%) 0 [3,6.107° 0.15\,0.257 0,02 0.01 | 3,4.1073

Nl S

(1-+at) =0 I | 0.51 0,12 |0.008107%| — -

2 (L2 3 0 | 0.13 |0.13]0.032 0,009} 0.004] 10—

Note that ¥ is a dimensionless generalized coordinate,
equal to VI/p. If the need arises for evaluating the infor-
mativeness of. a trajectory. segment measured by normal linear
units £, then it is necessary .to take into account that as-
relation takes place between the corresponding measures of
informativenessin

The numerical wvalues .of. function f (x) are shown in Table
5.3, and its graph. is glvep in Fig. 5.5.

From the table and .graph, we can.see that, from the
point of view of defining the SV's position in the trajectory,
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FlfT T : the segment removed from the traverse in

@ fﬂy ' the length. of the traverse distance is
L o ==——c the most informative. Informativeness
ajﬂx A —A- which exceeds half of; the maximum is
AN attained within the limits of the inter-
£1) val of values x from v3-2/2 v3+2/2 .

[ A According to measurements near the
at as ¢ @@AJ traverse afid:at -distances exceeding the
T AR triple value of the traverse dlstance,
Fig. 5.5. Informative- the 8V's position in the trajectory is
ness of different poorly determined.
krajectory segments
with relation to the .. #&% 4.Tnm’ uslng the. data:cited, we sheuld
different components of. keep An mind the. fact that they are
coordinates and Velo~ " completely. related: to the range-measur-
CltY- - .. ing method. As for the Doppler method,
' "they are applicable to it only 4f they
~fulfill the .conditions for executing
this method, Wthh amounts to the fact that the measured tra-
- jectory segment must include two segments identical in length-
located in thectrajectory symmetrical. to the traverse point.

: Determination. of the Traverse Distance by the Range-Measur-—
ing. Mefhod

We can judge the informativeness of different trajectory
segments in a given .case by the magnitude I, = —(d/dx)z {0)
which in. the case considered is equal to I, = x,fa2(x) = gx

The wvalues. of function ! (x) are shown in Table 5.3 and
Fig. 5.5. ' ‘

The trajectory segment. near the traverse is the most in-
formative from the point of. view of deflnlng the traverse dis-
tance; .the trajectory segment whose length is somewhat greater

than. the value of the traverse distance has informativeness which

exceeds half of its value on.the traverse.

. Determining the Traverse Distance.by the Doppler Method

:The informativeness .of different trajectory segments is
characterized in this case: by the function

! [p =a. f}(x)—-/z(x——ﬂrctgx 2 +x (dfctng \
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where y.,=x; /pv.. The values of this functlon are shown. in Table
5.3 and Fig. 5.5.

We can see from the graph .and table that the trajectory
segment removed from the traverse at double the. value of the
traverse distance is the most informative. The Doppler measure-
ments in the 01rcumtraverse segment of trajectory are only slight-
ly effective. :

Determining;the”Components'of the Velocity Vector

Data given in the previous section allow judgmng the
informativeness of the ve1001ty measuring process by using signals
with known and unknown initial phases. In this connection, for
a signal with a known initial phase, the informativeness of
defining the longitudinal '‘and transverse components is suc-
cessfully evaluated.

The informativeness of the trajectory for defining the trans-
verse component is evaluated by the same derivative of the func-
tion fj(x), which describes the conditions for defining the
SV's position in the trajectory (see Table 5.3 and Fig. 5.5).
Trajectory segments distant from the traverse point on the length
of the traverse distance are more favorable for defining the
transverse components of velocity.

In order to obtain an idea about measurement conditions more
favorable from the point of view of defining the longitudinal
components of velocity, it is necessary to compute the derivative /130
of function f£3({x) according to x. This derivative is equal to

fé(x) = x4(l+x2)'2.

The derivative's values are given in Table ‘5.3 and in Fig. 5.5.
The trajectory segments farthest from the traverse are dis-
tinguished by greater .informativeness. Measurements on trajectory

segnments far from the . traverse p01nt at distances greater than
the traverse have a practical meaning.

As we . see from formula.(5.4.18), the .derivative of f!({(x) also
describes the conditions whith are more favorable for defining
the velocity vector modulus.

We can judge the informativeness. of different trajectory
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segments in defining the. wvelocity .modulus.by. means of a signal
with known :initial phase by the value of .the derivative f! (x).
The analytical expression .for this derivative is rather tgdlous
and difficult to analyze; however, from comparing functions
f3{x) and fg(x), whose values are given in Tables 5.1 and 5.2,

- we can see that when x increases, both. functions increase mono-
tonically. With-a small x, the values. of the second function
are approximately two times less than. the corresponding values
of the first. A numerical evaluation:.of. the values of the! &
Jd“hlvatlve of fg{x) shows that it differs little from fj(x),
with respect to the nature of the function and the numerical
values. Therefore, it is possible to consider that in a first
approximation of the dnformativeness, the properties of different
trajectory segments for defining the 5V's.velocity for a sig-
'mal with an unknown phase are approximately the same as for a
signal with a known initial phase.

Definingqthqégarameters of Motion by Azimuth-Scale Methods

For completing the picture, it.1is also expedient to evaluate
the informativeness of different segments of trajectory by
azimuth-scale methods. Since the potential accuracy of azimuth-

"scale methods on one pass were not previously evaluated, we

will cite the formulas for the ACF. second . derivatives of a

signal received from &8V moving evenly along a rectilinear
trajectory. Combining the origin.of time with the moment of
passing the traverse and using the notation accepted in §5.4 for
angle v, egual to.the angular distance between the traverse point
and the point of the 8V's position in the trajectory, we will
obtain

vt ,
Y= arctg — = arcty {.
g

The angle's derivatives with respect to the definable para-
meters of motion will be equal to

"

{

ay 1 a

91 _ —_ 1
p

at 14+t g

()i

-

s 1
142’ v 1412

‘Assuming that the definition of ,the angular coordinates
is produced by means of a parabolic antenna with a circular
aperture. having .diameter .Dy, we obtain the following expressions
for the maximum values of ‘the ACF.second derivatives from for-
mala (4.4,.6): '
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The informativeness of the measured trajectory segment is des-
cribed by derivatives of the maximum values of ACF second deri-
vatives with respect to generalized coordinate x, which in the
given case are equal to

g 1 TN
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The values:of these functions are given in Table 5.3 and
their graph is shown in .Fig. 5.5. In examining the table and
graph, we can form the following conclusions. In defining the
SV's position in the trajectory by azimuth-scale methods, the
close traverse segment has.the most. informativeness. Its length
'is comparatively small: the informativeness exceeds half of its
maximum value within the limits of a segment whose length is
equal to the traverse distance, which is somewhat less than the
length of the most informative part of the trajectory with range .
measurements, '

_ The traverse. distance and the .velocity modulus-are'more
effectively determined at a distance. 0of 0.75 p fromnthe traverse.

As we expected,.theuinformativeness.ofuazimﬁthfscale measure-
- ments decreases much more rapidly with.an.increase of. the tra-
verse distance than the .informativeness. of range measurements does.
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In this respect, azimuth-scale methods are even inferior to Dop-

pler methods. Naturally, the accuracy of azimuth-scale methods

~as a function of the distance to the. SV appears weaker if the

linear dimensions or base of the antenna system is: rather large.

in comparing azimuth-scale with range-~measuring methods, it is
necessary to take into consideration that the accuracy of these
systems is usually limited not by the fluctuational errors, but

by other errors, in particular by refraction errors. An impor- /132
tant 'quality of azimuth-scale methods lies in the fact that it ‘
is possible .to define not only the SV's position in a plane which
passes through the trajectory and observation point by means

of these methods, but also to define the sSV's shift with respect

to this plane. Neither range—measurlng ner Doppler methods

permit doing this, :

In concluding the examination of the<1nf@rmatlvene55
of different sections of a measured_ trajectory segment, we should
note several features of the results obtained. ' First of all,
we can see that it is impossible to speak of the informativeness
of a trajectory segment in general,. without referring to the
definable parameter. From the materials cited, we can see that
the different trajectory sedments. furnish data which differ
substantially with respect to the parameters of motion.

The near~traverse measurements. are useful from the point of
view of defining the traverse distance by range~measuring meth-
ods and the SV's shift along the trajectory and across it by
azimuth-scale methods.

The SV's position in the trajectory is defined by the
range-measuring method and the traverse distance is determined
by the azimuth-scale method; definition of all parameters of
motlon by the Doppler method is more expediently done by

'*g the traverse point to an order of magnitude of the
traverse dlstance.

Thus, despite the fact that measurements near the
traverse are suitable for the energy relation, they are un-
suitable in a number of cases from the point of:view of attain-
ing high accuracy in measuring the parameters of motion. .
From. the examination. presented,. it follows that for attain-
ing higher .accuracy in defining a. greater number of parameters
of motion with' short-duration measurements by range—meaSurlng
and Doppler methods, the entire cycle of measurements is prac-
tically divided into 2-3. times (or 2-3 separate measurements)
so that one of ‘the times would coincide with the period of the
8V's stay 'in the .traverse region, and the others would correspond

118



*to- the rather large distance of..the SV from the traverse.

The data cited allow.us to judge the./informativeness of
different trajectory segments in measuring during one pass in
the visibility range, assuming a linear approximation of the
measured trajectory segment. .Questions arise about what will
result if the measurements are carried out not during one, but
during several passes, and what the negative consequences of
the assumption about the trajectory s linearity will be.

The answer to the first guestion is clear. For measure-
ments during one pass, two coordinates of the SV and two com-
ponents of its velocity in the plane which. includes the.- trajectory
~and the observer are defined. Measurements during another pass
allow defining the same four values in another plane which,
generally speaking, is not coplanar with the first.

In processing the results of measurements during the two
passes and computing a priori data about. the orbit, it is also
possible to. select wvalues for the 1n1t1al conditiens with respect
to any moment of time which better correspond to a more accurate
orbit and with which the SV, at the moment of passing the traver-
ses, will pass through the point found in the process of measuring
during separate passes, and will have a velocity at these points
whosé components will coincide with the more accurate values of
the corresponding velocity components.

In this way, it is clear that the accuracy in defining the
parameters of motion on several passes will be higher, other con-
ditions being equal, with a more precise definition of the
corrections to the coordinates and velocity components on each
of the passes separately. The materials cited give the answer,;
with respect to more favorable conditions for defining the
different components of. the parameters.of motion during separate
passes. The gquestion concerning the choice of the most favor- /133
able @bseratlon conditions during subseguent passes is a sepa-
rate problem which is outside the scope of the present investi-
gation. It can be expected that . the.final results will be more
precise if the angle of intersection of the plane where the com-
ponents of the coordinates. and velocity, made more accurate
during the .separate passes, -are ordered, is closer to a right
angle.

The question about how much the data presented here differs
from the informativeness of .an elliptical or circular trajectory,
with respect to the -informativeness of the different sections of -
the measured linear trajectory segment, also regquires special
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examination.

Actual circular and elliptical trajectories will, naturally,
differ from .the rectilinear trajectories which were discussed
with respect to their informational . properties, although a linear
approximation, evidently, allows us to judge rather reliably the
qualitative picture of phenomena which result from defining
circular and elliptical trajectories with low flight .altditudes
and small eccentricities.

The results mainly give a gqualitative idea of the in-
formativeness of different sections of the measured trajectory
segment and can serve as a starting point for a more detailed
examination of this guestion, for example, by methods of numerical
analysis, . : A :

In analyzing the results of an informativeness evaluation,
it is again necessary to consider the question of the choide of
the informativeness measures. At first glance, it seems that
the informativeness measure used does not always completely and
reliably reflect the informativeness of a trajectory segment,
since the measure examined is fiat strictly connected with the
value of the decrease in the error dispersion., Difficulties
with inverting the ACF second derivative matrix can arise with
its use. In particular, in making, for example, range measurements
on a close traverse .segment of trajectory which.is more. informa®
tive for defining the traverse distance, .we are not in a .position
to obtain any information about the two-dimensional or three-
dimensional vector of the parameters of motion due to the fact
that the matrix of ACF second derivatives, according to the
initial conditdions in the given case, is not yielded by inversion.
Therefore, it seems that the most accurate representation of
informativeness and’'the actual picture .of the megsurement results
are given only by the value of the decrease in error dispersions
in a measurement segment of unit length. However, it is obvious
that similar doubts do not have serious foundations, and in
reality the informativeness measure, equal to an increase in the
measurement accuracy of a given parameter in a measured segment
of unit length, offer an objective and true concept of the
effectiveness of the measuring: process,

The difficulties which arise #n inverting the ACF second
derivative matrix are reasonable and . .explicable. What is more,
- the indicators of informativeness examined clearly show in which
conditions the matrix. of second derivatives will'yield an in-
version, in which it will not, and which measures must be car-
ried out for obtaining its invertibility. Actually, returning
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to the example cited, Wé “should note that, as the measure of
informativeness shows, the close traverse segment.in range

" measurements. conveys information..only about one geometric value --

the traverse distance, and every. experiment for evaluating the

errors in.defining two or.three coordinates are doomed to failure,

Therefore, inverting a three-dimensional matrix of .ACF second
derivatives is impossible.

~ On the other hand, as the informativeness indicators in-
dicate, it is possible to obtain information_about two geometric
values -— the .traverse distance and the SV's position in the
trajectory -—- by the glven range measurements on the traverse

and at a defined distance from the traverse. Therefore, a two- -

dimensional matrix of ACF. second derivatives of a.signal re®ii-
ceived during two spaced time intervals (near the traverse and
removed from it to the. value of the traverse distance) yield
an inversion.

From the. considerations cited, it becomes clear that the
informativeness measure used in a given operation offers the
possibility of a farily detailed, reliable, and. objectlve evalu-
ation of a guantity of data which can be obtained in the pro-
cess of measuring a given trajectory segment, and.this measure
can be recommended for actual use.
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Chapter 6 '

ANALYZING THE PROPERTIES. FOR DEFINING. DIFFERENT SYSTEMS
OF PARAMETERS.OF MOTION

6.1. Intrdduction

. Among the many systems of parameters which unlquely describe
the SV's position in a phase range [26], we can dlstlngulsh the
folloWLng'

-= components of the coordinates and the velocity wvector
(the initial conditions- of motion) of the .SV in. some geocentric -
or topocentric systems of coordinates with respect to a defined
moment of time ty:

~- Keplerian and similar orbital elements;
-- canonical parameters.,

The choice of a concrete system of parameters is dictated
"both by the content of navigational (geodetic) determinations
and their method and by the geometric properties of space.
In particular cases, the.propé&rties of space are decisive.

In satellite navigation and geodesy using bar'fixedd s
system of reference, values which define the spatial position
of the observer in the coordinate system selected appear as
the evaluated parameters. _

Together with the parameters used for features of the space-
time position of the SV or the observer, secondary values which
allow improving the accuracy of the navigational and geodetic
definitions can appear as evaluated elements., Values for defin-
ing a different type of errors are related to these elements, and
also other constants which describe either the SV's movement or
the conditions for transmitting electronic signals.

The pragtical use of different systems of parameters is
due to théidésire of obtaining the possibility of integrating
differential equations of motion for a broad class of orbits:
together with this, it is possible .to greatly increase the ac-
curacy of defining the parameters of motion for fixed conditions
independent of the observer.

In the‘literature [16, 25], the choice of one system of
parameters or another is considered only. from the point of view
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of using.it for predicting. the SV's movement and .the compu-
tational difficulties corresponding to this process. More-

over, it.is evident that .such a choice should be made, taking
into account those propertles which arise in the process of
information processing for .purposés of defining the selected

set of parameters. The fact that the 51mp11c1ty of. algorithms
and, in connection with this, the operation of defining and pre-
dlctlng the parameters of the SV's motion, in the final analysis,
their accuracy, depends on the choice of the parameter system

to a 31gn1f1cant degree.

Not every system of parameters selected, used for describ-
ing the SV's motion in the entire range of their definition,
results in a matrix of ACF signal second derivatives according
to defined parameters which are sufficiently spe01f1ed/“
for solving an extreme problem by methods of successive approxi-

- mations. on contemporary computers. with a completely defined
capacity. Parameters in the form of components of the coordinates
and velocity vector at a fixed moment of time easily lead?toiss

a concurrent solution. However, in solving a number of prac-
tical problems, the most suitable parameters for numerical and
qualitative analysig are not the set of parameters which des-
cribe the initial conditions of motion 'in a geocentric rectangular
or other equatorial or orbital systems of coordinates, but a
system of osculating Keplerian elements and similar systems,

since they give a more complete representation of the geometric

- characteristics of the orbit and its orientation in space. It
should be noted that for examining the question of the dis-
tribution of the Earth's gravitational field in the space .sur-
rounding it, the set of osculating elements in the form of
Keplerian parameters of orbit, evidently, is a unique system

which offers the possibility of solving the problem posed [7]
‘more simply. Moreover, the use of slowly .changing parameters -/
which osculating Keplerian elements represent as the ephemerls

of orbital radio-navigational or geodetic points for purposges

of autonomously determining moving ground, surface or space
objects draws special attention, since ‘it allows significantly
decreasing the size of the long=-term storage of the on~-board
memory device and simplifies transmission.of. ephemeral infor-
mation,

With small eccentricities in the elliptical orbit or in-
significant angles of deviation in the mathematical relations
which describe the differential equations of the SV!s movement,
the denominator apprcaches zero. This leads to the fact thst
accurate integration of differential 'equations of motion in the
ranges 0f definition of the parameters indicated becomes com-
plex or even impossible. As a consequence of this, defining the
system. of parameters selected will be accompanied. by an increase
in errors, Moreover, as we will show below, the correlation
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matrices of errors. in defining. the. . parameters of motion are
characterized by the fact .that..in proceeding,.to. the ranges of
‘Parameter definition.mentioned above,_thewnumericalvvalues of the
definition errors.are significantly increased.. .Deterioration

of the definition accuracy in. the given case is due to the
Properties of the parameters' space as systems of reference
accepted for the physical representation of the $V's position
vector.

: In order to solve the. problem of making the parameters

of motion more precise with the accuracy required for a broad
class of orbits, the necessity arises in practice of using other
elements of motion in place of those which produce many systems
of parameters [6, 7, 21, 22,.28). Although in much of the litera-
ture on celestial mechanics and the theory of & S¥vlts.flight,

it is shown to be possible to integrate the differential equa-
tions of motion with the introduction of new systems of para-
meters, qualitative and guantitative analysés.of changes in
definition accuragy,due to the introduction of the new systems
of parameters and changes in their values in the entire range of
possible occurrences, could not be produced. Therefore, the
purpose of the present chapter will be to examine the features
for defining the SV's trajectories of motion by using different
systems of parameters, especially, as we showed in the previous
chapter, since the potential accuracy of their definition is a
function of the composition of more precise parameters., Moreovér,
considering the question of the accuracy in evaluating the SV's
position vector. in different systems and the choice of a more
accurate system of reference for determining the precise proper-
ties of the measurements systems is reasonable.

/37

Considering. that a linear value (a.continuously changing /137

range in the observation process) is the informative parameter
of the signal received, it is useful. to describe the exact pro-
perties of the measurement systems by the. linear errors of the
radius vector components and the velocity vector components or
their equivalent values in a rectangular system of coordinates.
Furthermore, in defining- -the parameters of motion, the specially
chosen rectangular system of reference will be called initial.
The choice of a rectangular cocrdinate.system as initial is
dictated by the fact that for defining the parameters. of motion,
additional. transformations of the matrices of the ACF signal
second derivatives are not regquired. . Moreover, in a Cartesian
rectangular system, the covariant and contravariant localized
basis vectors coincide with the basis vectors of the system,
whereas the localized basis vectors in orthogonal curvilinear
systems of reference are functions of a point. A characteristic
feature of rectangular systems is that the Cartesian coofidinates
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of any position vector and..their differentials with respect to
different systems are connected.by. linear functions. Linear
coordinate. transférmation matrices and their differentials are
identivally«equal .and represent orthogonal rotation matrices.
Therefore, for all rectangulaxr systems.of reference, the volume
of the dispersicn ellipsoid for defining the parameters of
notion remains the same. In using other systems of. reference,
it is necessary to know thelr geometric propertiés and dlffer—
ence in comparison with rectangular systems.

5.2.. Transforming Coordinates and Thelr Differentials, Tran-
51t10n Matrices - —

Any system “ofparameters of motion selected serves for
describing the same principle
Therefore, naturally, a rigid unigu Cerrela
between the different systems which ¢an be expressed by defined
mathematicdl relations. The latter offers the possibility of
transforming errors in defining the parameters durlng the
transition from one system to another. However, prior to pass-
ing to an investigation of the. accuracy in defining the velocity
vector in different parameteruareas, we should note some funda-
mentally important conditions which pertain to. the differences
between transforming coordinates and their differentials and
define the relations which-describe these transformations.

Definition error transﬁérmatlons in using different systems
of parameters (coordinates) as a system of reference for re=-
presenting the position vector of the SV or the terrestial posi-
tion of the observer are characterized by linear transformation
matrices for the differentials of the position vector components,
and not by coordinate. transformation matrices. The connection
. between these is expressed by means of nonlinear functional
dependencies whose form is defined in each concrete case by the
composition of the parameters evaluated,

We will assume that the SV's position vector or that of
the terrestial observer in an ‘area of m-dimensional space can be
given by means of different systems of independent parameters
g and g; then each point: (ql, d2r sees dp) ©f the m-dimensional
space of the initial system of parameters g can be fixed corres-
ponding to the ordered set m.of real numbers g1, 92, «..: 9ms
which represent the value of the components of a finite para-
meter system g. The elements. gj of the position vector defined
in the range of finite parameters g are connected with compon-
ents g4 of initial system gq by the relations

g1=g1 (qh Goy oiy qm); ggng(f]], oy ey qm);
-3 gm £.(q G2 oo qm), i (6.2.1)

BT
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.Which in the position vector's .definition range are everywhere

equlvalent,mand the Jacobian.of the transformatlon is not
equal to zero.

t a(g]. gz ';‘- gm) %0- \
oot 1 b (6.2.2)

a(qll QQ’ .. Qm)

" It is characteristic that if eguations  (6,2.1) define the
relation between the Cartesian systems of coordinates, generally
speaking not rectangular, i.e.,:they describe the relation between
the components of the observer's position vector with respect to

_dlfferent Cartesian systemssof reference, in this case -- and
only in this case =- all eguations are linear and can be ertten
by means of a llnear transformation operator

Jer = Jer9er- - (6.2.3)

Transformation matrix Jig. in the general case, is defined by

the product of three factors, each of which is an orthogonal

rotation matrix R(Y), which describes the rotation of the initial /139
system of coordinates at angle ¢ around one of its axes. The

modulus of the Jacobian. of the rotation matrix. is equal to one.

In this connection, since the elements of matrix Jgg are not

functions of the components of vector ggy., nor of the components

of vector ggs, for transforming the differentials of the coor-

dinates, the” relatlon will correctly be

In uSlng Cartesian systems,  the linearity of relations
(6.2,1) is preserved,. and.where. the defined. position vector is
" complete, six-dimensional, i.e., more precise definition of not
only the coordinates, but also :the.components of. the velocity
vector is effected. However, .in this case it is better to
refer to transformations of the position vector components and
their differentials instead. of to transformations of the co-
ordinates and their differentials, since different systems of
parameters &an be used with the.use of.a. definéd.spatial co-
ordinate system for the characteristics .of the position wvector.
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Moreover, the delimitation allows.us to construct .a .sharp bound
between.the the transformations .of parameters which.characterize
only the spatial. position, and parameters. used for. describing

the space-time position of moving objects. We should add that
in the majority of cases, coordinate transformation matrices

and their differentials are constituent elements of the formulas
for transforming the components of a six-dimensional position
vector and their differentials for representing a glven vector
in different parameter .areas as systems of reference. Therefore,

such a delimitation 31gn1f1cantly facilitates further discussion
of the material.

Transformations. of the components of a six-dimensional
position vector and their differentials with respect to different
rectangular coordinate systems are described by quasi-diagonal
matrices whose diagonal units are dlrectlon cosine matrices

’tr ‘
y

(6.2.5)

where gy, and gty are vectors of the velocity components in the
rectangular coorditidte. systems studied; dd4, and dgtr are the
vectors of the velocity components dlfferentlals. :

Inverse transformations in the entire area of possible oc- /140
currence of the position vector are allowed for formulas (6.2,3)-
(6.2.5). 1In this'connectlon, the linear operator of the inverse

transformatlon is identical to the transposed value of the direct
transfbrmatlon.

In the general case, expressions (6.2.1) are non-linear with
respect .to components‘qj by relations:

g =gla),

whose complexity in selected,system,gjigéa function of the com-
position of parameters g, used as the initial system's components.,

Simplgr formulas for transforming the coordinates are the
relatidons which define the relation between. the components
of. Cartesian rectangular and universal systems whose orlgln
and basic planes.coincide. 1
27



L Thus.,. for a cylindrical coordinate system with components

%§£NF=1JQ &F zC[[, this transformation.takes the form of

ger = Rz (=02 Qcs - (6.2.6)
where gPy = |]x v z]| is the position vector in a'ngg#ayéﬂléf}j
system of coordinates; QT = ||p 0 2z |] is the vector defined By

‘the linear components of the cylindfical system of reference
and which describes one of the coordinates of the lines of the
observer's position; Rz(-Ag) is a matrix which describes the
transformation of rectangular ccordinates in rotation. The

positive value of argument Ao describes. counter~clockwise rota-
tion, ' ' :

For a spherical system with components qg.=‘]|rﬁﬁgiﬁjlr
the transformation. takes the form of cTe
gtr = Rz(=Ag) R, (~=9)Qq, (6.2.7)
where R,(-Ag) and R,(-¢) are rotation matrices; Qg = ||rg 0 0|

is the linear coordinate of a. sphericd&l system of. reference,

The relationship bétWeenwthe coordiﬁﬁ%es,of,the Cartesian
rectangular and universal geodetic systems. of reference with com-
ponents g = |2 Bg]] is "defined by the relation

Bep= R (LR, (— B) Qgl @,
ST e (6.2.8)

‘which can be represented as a transformation of. the coordinates /141
of some guasi-spherical system to rectangular systems. It is
characgeristie that .the position of the origin and basic plane

of the quasi-spherical system does not remain constant. For

the parameters accepted (of semimajor. axis aj and eccentricity
e3) of the reference ellipsoid with respect to whose plane alti-
tude H is measured, the position of the origin and basic plane of
the guasi-spherical system.of.reference changes with a change in
geodetic latitude Bg. In this connection, the basic plane of
‘the guasi-sphericalsystem is shifted .parallel to plane OXY of
the rectangular coordinate system, and the origin is along axis
0z. This-shift is described by vectgr.Q )]0 0 - Neg sin B,| |
Its maximum value is‘equal.to.i“a3we3{.1_@:1_Linear‘coordinatg‘
Qg = I{Nu+.HJO 0||:representSztheRSum”of;t e altitude H and the.
radius of curvature N = ag/v1-e% sin 4B in the plane. of the
reference ellipsoid along the. first ¥ertical at the observation
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point.

Relation .(6.2.8). can be. replaced by .the follow1ng ex—-
pression .which is equlvalent to it:

where QT = ||N(1-e% sin 2 BgJ + HO - Ne% sin By cos Bg[].
Relations (6.2. 6)-(6«2 8)..can. sexrve. as the. basis for ob-

taining both the formulas of coordinate transformation for

the transition from different curvilinear to Cartesian systems

of reference by means of supplementary linear operators, and

of: linear operators for transforming the coordinate differen-

tials.

Thus, in examining cylindrical and:spherical orbital sys-
tems of reference.whose basic planes are combined with the
plane of the &gculating ellipsis, and the polar axes at the
moment of osculdtion, coincide with the sense at the ascending
‘node, formulas for transforming the coordinates are defined by
the following relations:

 BesROOR(-OR(~wQy (6.2.9)
. —R(~«~)R( DR, (-0, (- 7,) Qg R

, s 4-;‘ bl w"

A ﬁl':lr

in which the arguments of the rotation matrices represent the
values: u = the latitude argument; i - the orbital:plane devi-
ation; 2 - the longitude of the ascending node; ¢ -. the latitude
with respect to the orbital plane. ‘ ' '

Formulas for. transformlng the differentials . of the coordsm = /142

inates for curvilinear systems of reference are defined by
theé expressions: :

dgtr=R (— lc) Wedqge \
‘ Agry— R, (— kc)R (—9)Wgydq. g
: dgtr—R( L)R}.(_“ﬁg)wngQ

(6.2.10)

The differentials. are interlinﬁedwby means of-the linear
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Operators

+ J.s=R,(—1g) R, (—2) Wi g= Rgg Weg,
Y= RCORCEOW= Yy )

(6.2.11)

in which are included matrices W,, Wg and W;), which directly des-
cribe the transformation of coordinate différentials of the
coordihgte systems examined, in contrast to the formulas for
transforming the differentials. of Cartesian systems together with
orthogonal matrices of rotation Ros Rg, and Ry. In .the special
-case of converting from coordinaté errors in gurvilinear (cyl-
indrical, spherical and geodetic) systéms. to errors in the com-
ponents of Cartesian rectangular systems, the direct transfor-
mation matrices Ws, Wg, -and W, describe the transformation of
angular parameter errors in 1?near systems and are defined by

the following relations: :

- . . - -

10 0/ St 0 o]
W =—|0p 0 W= |0 rocos ¢ O,

G ’ & 8

T oo 0 0 q,i
A5 L 1 0 0
3 - W.=| O (N+H)cos B 0 H | .
e 0 0 N+ H (6.2.13)

N, Na—e
where VT (T —elsin?By)
h_%’;___.__ e

L. N T T
e i

£ . Rﬁnﬁé&é&?transformations,in the entire range of possible co-
ordinaté“assignment with the exception of the specific points
in which matrices W,, Wy, and W; become specific, are permitted
in formulas (6;2.10?. For  this reason, with a constant value
of the linear errors-in g&latién iy to.approaching singular
points, errors in .the an@ular,COmponents.of.vectors dg.. d4gg and
dqg increase, which is seen from .the following relations:
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.d)\._c_%(dy cos k= dx sin )C)

dig = _ (dy cos kg — dx sing,),

r,c
SOSCP

dep -_—.i[dz.cos o —(dx cos l“‘s-‘,—|—dy sin lg;‘) sin ¢},
r.

-1

TN + H)cos By

! fﬂd?umiguidxmmlmkdyﬁnL)ﬂan., - {(6.2.13) /143

{dy cos L —dxsin L),

]

Transformatlons of the position vector. in convertlng from
a curvilinear to a rectangular system of coordinates in a
partitioned matrix form of notation are defined by the relation

0 Q-—‘. 1 I
” gtr ” “ K 4 q‘ ’ ' (6.2.14)

in which under matrices R, J, Q and g, one of the sets of
matrices R, Jor Qs and g, or Rg, JS, Qs and gg or Rg,'J ' Q and
dgr -depending on. whlch of the curvilinear coordinate 8YS ems

is used, should be understcod. Vector g is described by the
velocity components of a curvilinear system. .Thus, in trang-
forming the coordinates of a spherical s stem the vector in
question is determined by the function q: IIrK AS o]

The formulas for transforming the differentials of position
vector components in converting from curvilinear systems of
reference to.rectangular systems.can be.defined .in a general
form by the expression ,

— )

dg,_j] ” ’ ’) ”ﬁ” | © (6.2.15)

e

in which the outer. diagonal..block V{Va, V -and Vg, corresponding
to cylindrical, spherical and geodetic. systems o% reference)

of the matrix of direct .differential transformations describes
the transformation of errors in angular velocities into linear
velocities, resulting from.errors in the coordinate components
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of vectors.dgy, dg, and dgg. Matrix R:has the same sense as in
relation (6.2714). Matrix W is defined. by one of the expres- /144
.gions of (6.2.12) with regard to .the curvilinear system used. '
Transformationsof. the first two factors of the right part of
expression. (6.2.15) represent none.other .than: the transition

matrix whose diagonal blocks are defined by relations (6.2.11).

The outer diagonal blocks. (V., Vg, and V.) of. the direct trans-
formation matrix of diffexentials which Zimultaneously aye;the

ocuter diagonal blocks of the transition matrix, can be defined

by means of the expressions

0 —dg 0 L .

'i“
1
Vv, =] e o6 o .
I o o o o
0 o \ o
. TS L
Vg__- = )‘!'s COs ¢ rscosc?——rsté sing —rﬁg\q'?s%in o
¢ . rghgsinpcos e K,
. 0 ~—(N+H) L cos2B,. - (Ny-H) B,r;
’Vr= L c?sfnig Hcos%r-(.NIA—H)Bgsi'nB(.;g——(N.—|—H)Lsian ,
e b Ty QIR By HAR A :

(6.2.16)

where N, %_3'N1 24 sin B(j-qcos B,;.?/(l —é? SiAnng’b [

The inverse transformation.of the position vector component
differentials can be represented in . a general form by the
function '

BT 2

G
0 ]

.
_f (6.2.17)

e
g

in which the matrix element U{(Ug;, Ug and Ug, corresponding to
cylindrical, spherical and geodetic systems of reference) is
defined by one of the relations

w0 5.0
L8
[ P

e s S LN

0 0 0
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o 0 hgCO8 ¢
— Ay rgpsine— r;:,;;qcos o Ao
Vo] =% T e e |
s 5 e
_.z _ R g .
r. 7 n ¢ ;@'
s Bme 8 s
(6.2.18)
0 LcosB. B :
: R g
L (NH-H)B sinB —HcosB.- L _on
U= T NFH (N H)7cosTB_ NTH 89
1 . . . .
¢ bf L ; . H+ Ng B
“NEE TN RT TR

.- e e e ¢ e e

Matrix W—1 is inverse with respect to matrix W of expression
(6.2.15). Therefore, relation .(6.2.17) is walid within the
range of the 8V's position vector definition in which matrix .
W is ordinary.

Using relations (6.2.15) and (6.2.17), it is possible to
define the relation between the differentials ¢f the position
vector components in the transition from the kth to the jth
curvilinear system of reference. This relation is described
by the expression

TAREAN et
M aq, rU , Wy 0 RiR, |7
w §] dq B
>< k J .K , L
Vi We Il dq,

. el (6.2.1:9)

which is wvalid if the. pclar axes of both systems coincide, 1In
the transition. from a spherical to a cylindrical system, relation
(6.2.19) is significantly simplified, since the product of
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ﬁ%%RS is identically equal to.rotation matrix Ry(-¢).

Formulas. (6.2.15), (6.2.17) and.-(6.2.19) descrlbe the
transformation .of.the initial conditions of motion with respect
to different coordinate systems whose classification and enumer-
ation can be‘found in [26].

Leét us proceed to systems of parameters which include Kep-
lerian and similar. exrbital: elements. In this respect, we
should consider that in all cases where Keplerlan and similar
parameters appear as componehts.of the SV' s position vector, /146
as a rule, the coordinates and components of the velocity vector
are used as the initial coordinates for all methods of nawi-
gational and geodetic definitions in an inertial geocentrlc
rectangular system of reference [7]. Therefore, it is necessary
to obtain the relations which connect the initial conditions
of motion in an inertial rectangular coordinate system and their
differentials with the corresponding Keplerian or similar elements
of orbit. These relations must be suitable. for applylng differ-
ent operations of matrlx calculus.

Furthermore, it w;ll be assumed that all systems of para-
meters of SV motion examined describe.its position.in m-dimen-

' sional spaces at some moment of time tg. Without 1051ng
generality, we can assume that at moment tg the SV's movement
occurs according to a purely Keplerian orbit. In this con~
nection, the trajectories of motion are represented by a plane
curve for defining the SV's position in which other instan-
taneous arguments —- true §§ v and eccentric E anomalies, average
latitude M + w, etc., can be used.instead of time t. Usually,
the origin of the instantaneous argument is related to the SV's
moment of passage of the perigee or the ascending node. If
we take into account that some Keplerian and similar orbital

- elements are also directly connected with the reference point
of an instantaneous variable, then in defining the inter-
relationship between the initial conditions of motion in rec-
tangular coordinate system OXYZ (Fig. 6.1) and the Keplerian
.or similar parameters, it is necessary to introduce some inter-
mediate systems of. reference... Thus, in.using Keplerian para-

- meters of .orbit which require using. an ¥nstantaneous variable,
whose .origin coincides .with the moment of the SV's passing the
perigee, it is expedient to.examine a geocentric orbital rec-

. tangular system of coordinates 0X1Y¥127+ whose axis 0Xj coFn-
"cides with the direction on the perigee, as an intermediate
system. At the same time, three angular elements i, 4 and
of a Keplerlan parameter system which describes the orientation
of the orbit in space, are simultaneously elements of the
‘direction cosines between the axes of coordinate systems 0X;Y32;
and OXYZ (Fig. 6.1). The three other orbital parameters a, e
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and My define the conic section regardless of the coordinate

' system. selected. and, describingijthe space-time position of

the SV 'in.orbit, give a comprehensive idea of its motion in the
orbital system of coordinates 0X;Y;Z]. '

In examining systems of parameters similar to Keplerian
systems and canonical parameters .of motion, taking into con-
sideration that they all have a single functional dependence

relative to. Keplerian elements of orbit, a geocentric.system of .

rectangular coordinates must be considered as. the initial sys-
tem, and a system of Keplérian elements i, w, &, a, e, My as
the intermediate system.

Fig. 6.1. Geocentric éguatorial
and orbital systems. of coordinates.

For. defining the interrelationship of the components of
the SV's. position vector in the area of. initial conditions of
motion gt = ||x v z x ¥y 2z|]| in an inertial rectangular system
of coordinates OXYZ and in the area of Keplerian elements of
orbit, gT = |}|i w @ a e Mg|], we will represent vector g by the
following expression (Fig. 6.1):

g = GHSg; | (6.2.20)

where g = ||x3 vy 21 %1 ¥ z1|| is the SV's position vector in
the region.of 1nitial conditions.in a geocentric.orbital rec-
tangular system OXqYy1Z37 G, H and.S are matrices of a guasi-
diagonal. form whose diagonal ‘blocks are rotation matrices

135

ne
=
o
~J

|



R, (-Q), Ry(-i).and R, (-u), respectively.

The elements.of matrices G, H .and S are defined only by the
Keplerlan parameters of orbit which describe its orientation
in the area of a system of .coordinates 0XY%.  Vector gq is a

function of. the intraplanar Keplerian elements of orbit and the

instantaneous argument selected. The representation of vector
g1 is significantly simplified 1f a value of eccentric E or true
U is chosen as the argument. Taklng this into. account, we can
describe vector g3 by an expression which is a function of the
eccentric anomaly:

af{cos E—e)
thw%mE

sulE
g = a2 T—¢ cosE ||’

/P‘ Vi_e,QcosE
] 1—(, T—ccos E
SRR DU S (6.2.21)

where a is the semlmajor aax:i.s 0f the ellipse; e is the eccen-
tricity of orbit;u is a coefficient equal to the product of
the gravitational constant in the Earth's mass, and also a
function of the true anomaly:

! T el —eRycos | z

' I +ecosd

F a{l—e?) sind

l4 e cos &

0

817 : w o sin®

_ TV e yYiZe

' /T e+ cos

: Ve vice

0

(6.2.22)
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Thus,. expression..(6.2.20) defines. the functional. dependence
of .position.vector g on the. components.of .vector g. .For finding
the formula .for. transforming. the differentials of position.
vector .componernts. g -and. g..-it is. necessary to define the
transition matxix, the P-matrix, of. partial:derivatives of
coordinate components: and.the velocity vector in system OXY?Z
by Keplerian parameters of orbit. It is possible to represent
~ the indi@ﬁted matrix as a derivative of position vector g
according to position vector gq [7, 14): P = §g/8g. In a
form more convenLent for study, the tranSLtlon matrix can be
wrltten as

, _] (6.2.23)

in which each element P representing a six-dimensional
vector (matrix column).,. %aklng.into_account’relation (6.2.20),
is defined by the product of several matrices.

‘Thus, the first three elements of expression (6.2.23) are
defined by the following relations:

, d]-‘['

T S
P,=G— Sg,, P,=GHZ
I ai &1 : G ow &
3G .
_P-s ;&—HS_&,M | (6.2.24)

which can be easily calculated if we consider that the first
three factors of matrix P are quasi-diagonal matrices, and the
differentiation operations, which do not change the structure,
result in their simplification.

The last three elements of matrix P, defined by expression
(6.2.23), can be represented. by the relations..

P.—GHSPE | p,- GHS &,
da de

P.s=GHSﬂ )
e oMy L (6.2.25)

In thismbonnectionruallowingwfor.expression (6.2.21),. the deri-.
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vative of position.vector gj.by: scalar a. is deflned by the func-
tion-

cos £ — ¢

V' 1—¢? sin E
O i
o8 _ 13/ sinE
s | TV @ e
by Vizes e
2‘11 @ l—ecos £
0

(6.2.26)

Vector gy ‘Is7a function of the eccentricity, both directly and
through the eccentric anomaly. Therefote, for finding the
derivative §gj/de, it is necessary. to. deflne the partial dif-
ferential of position vector gj; by scalar e:

} dgl agl oL
d, de 9L 4o
Bi= mdet g o (6.2.27)

£
o o

whose component elements are a partial derivative of the eccen-
tric anomaly with respect to the eccentricity. The latter can
be defined by differentiating a Keplerian equation:

f.-—e smE M

6_1:?%_ sinE———e(E cos E=10.
oe oe
(6.2.28)
Whéreby we have
OF _ _sinE _
d¢ 1—ecosE" (6.2.29)
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P . . _ [T

kmE+ﬂmmE—2
l—ecos E
(cos E —eé}sin £
V' 1—e?(1 —ecos E)
e A . (2—ecos E)cos E—e
—]/ (1—ecosE)
/' w (2co8 E—ecosiE— e)cosE+32—1_
C ]/ a V1—e2{l—e cos E)®
0

e s ——

T

Q
by

I

sin F

(6.2.30)

The partial derivative of position wvector g3 according to mean
anomaly My .is expressed by the product of two factors, g1/dE
and dE/dMg. The latter can be defined by means of a differ-

entiation corresponding to.expressions (6.2.21) and (6. 2 28)'f
Therefone, the relation is direct

. sin E
I —ecosE
C T "¢ cos E
g8 _ 0
oMy / » cosE—e
] a (1—e cosEy
LS Vi=eisinE
- ‘o (I—e cos £}
R ¢ B

(6.2.31)

Representing‘transition matrix P..in the. form of a partial deri-
vative of position vector.g, defined. by the product of the
matrices according.to. vector q,. whose components. appear as Kep-
lerian. parameters, we.can.easily.defdine any of the rows of the
matrix and any of its elements. 'Thus, the kth row of matrix P
can be expressed by. the following function:
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(6.2.32)

where,’GE is the kth row of matrix G, Taking into account the
principle of differentiating scalar quantity gj according to
vector 1‘[14],.e2pression (6.2.32) can be reduced to the relation

ij.pk___ ‘dgk 0g, 9gs agk 0gk agk
di dw 0% da de M,

(6.2.33)

S

wh@se &lements, according to the form of notation, can be re-
presented by formulas similar to the functions which define
matrix column P s of expression (6. 2. 23) However, their es-
sential differende is that P.jfi__f .i“% are vectors, whereas the
elements of matrix Py, are scalar values, functionally dependent
on the components of vector q. Anéther distinctive feature is

- that matrix row Gk, or its derivative §Gy/déQ, stands in place
of matrix G or its derivative with respect to angle . In cor-
roboration of the above, we will write the relations which
define the elementsijof matrix row Py :

JH a8
P =0p —8g; Ppp=0:sH_—¢g,
oi dw
dG J
Pra= G0 2 HSg,, PM:G;;.HS % ’
og og,
== Q. HS 21| ; = G HS —— .
Prs =0 e Pre F oM,

{6.2.34) /152

Expressions (6.2.34), which allow defining any of the elements

of transition matrix P, show that its:elements define the complex

functions of the components of vector q. The dppedtanceiof the

elements of the differential direct transformation matrix

as a function of the components of the initial. system of para-

meters is characteristic of. ‘all. non—orthogonal matrices, includ-

ing the matrices describediby. ‘expréssions - (6.2.15) and (6.,2.19).
‘the complexity of this function is defined both by

the components of the initial and terminal systems of parameters,
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which can be seen in the example which compares relations
(6.2.15) and (6.2.19).. . The. property referred to of elements of
nonorthogonal’ transformatlon matrices leads to the fact that
‘their determinants also are a. function. of sScme components of
~the initial"’ system of parameters. Therefore, the magnitude of
the determinants does not remaln,constant'with‘a change in the
.range of parameter definitien; at singular pgints, it is equal
to zero. ' i ' ‘

. Using: expres51on {(6.2. 20), and also the general, and some
special, properties of orthogonal matrices, the. propertles

- of the derivatives of orthegonal matrices according to the ang-

ularx- arguments and’ their derivatives, it is possible to represent
the formula for transforming the differentials of a gix-
dimensional -Keplerian parameter vector in initial conditdions of
motion "in a rectandgular system of reference OXYZ by the relation

” dgo RS O W, W, d(h ” J »

| f’gf{rr 0 RyIW. W, lllidq, | (6.2.35)

‘where dgT = ||ax ay dz]|]: dgT = ||ax .ay dz[lare differentials of
the coor inate. and velocity components of lnltlal conditions of

motion g; dqf = [[ai aw aQ]]: | |da.de aMy|] are dif-

‘ferentlals of the angularwandﬂln%raorbltal Kep?erlan elements;
"Rg = Ry (= Q)RX( i) R, (~w)is an orthogonal coordinate. transformation
matrlx in going from systen 0X1Y3.27 to.system OXYZ; Wy, W2,‘W3~
W4 are blocks of matrix Wy for the direct: transformatlon of dif-
ferentials of Keplierian parameters into differentials of linear
coordinates and components of the velocity vector.

Matrices W3 and W4, representing coordinate and velocity
component derivatives of the vector of initial conditions of
motion g7 in orbital system of- reference 0X1Y12Z31, according to
the intraorbital Keplerlan parameters a, e and MO,

_ e iy

_ dlxy ) W, — a(x, ¥4 %)

o dlue My P d{aeMy) '

3

) (6.2.36)

are defined by. the corresponding components.of.expressions
(6.2.26), (6.2.,30), and {6.2.31l). If a true anomaly is used
as the.instantaneous wvariable, then the matrices shown are ex-
pressed by the functions ' :
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{1 — ¢&?) cos i} _Ia(h—l—sinza‘}) __asind
i o L Vi=e
W,=| (1 —e? sind asin 2% afet cosd)|,

h 2h Vi—e?

0 0 o | J

(6.2.37)
sind _e+(l—.[:h);:0.s‘{-}lsi-ﬁiﬂ._ mcos® || ]
2a 1/:;2 (1—e?)3 (1—e%)? _
W,=|| etcos®  hcos?d—sin2® A’sin d I/J;_,
2a) 1—e? (1 — e2y32 (1—e2)?
0 0 0

K e s — PR,
M e e e

where h=1 #:e cosv. In this connection, the first, second and
third colufins of. matrices W, and Wy are identically equal £0
relations (6.2.26), (6.2;30? and (6.,2.31), if in the latter’ the
eccentric anomaly changes to a true anomaly.

Mat:;ices W1 and W, can be. represented by expressions

J 0 —sin & — sin ¥ cos{
\ A all —e?)
W, = 0 cos & cosbeos £ ———,
. 14ecos |
sin (o 9) 0 — cos (w4 §) J
0 —(e--cos¥) — (e cos Mcosé|
W,= 0 — sin i — sin#¥ cos §
i ;
; cos (w4 1) -+ ¢ cosw 0 sin(w--ttesine
; ST |
l/ a(l —¢%) ? // (6.2.38) 154

whose elements are defined by. the coordinate or velocity com-
ponents of vector g3, by ‘the angular. distance of the perigee and

the deviation of the orbit.
A characteristic of the. differential direct'transfor_ma'tion
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matrix is that its elements are not functions of the longltude
of the ascending node and are defined by intraorbital elements
a, e, MO and two angular parameters, i and w.

Expre551on (6.2.35) . shows that. the tran51tlon matrix R,
representing a linear transformation operator, is defined by
the product

P = GHSW,., (6.2.39)

one of whose factors is the direct differential transformatlon
matrix Wg.

Transition matrix P describes the transformation of posi-
tion vector component differentials when Keplerian elements of
orbit are used as the initial system of parameters. If the
initial conditions of motion in a rectangular system of re-
ference OXYZ appear as .the initial system of parameters, then
the differential transformation is defined by the expression

w1l
dg WK
which is dlrect in all regions of parameter definition with the

exception of . the spec1al points in.which matrix Wg becomes
51ngular.

sTutcTag, | (6.2.40)

The transformations examined show that the connection be-
tween errors in the components of the SV's position vector or
the terrestial observer, with respect to the different multi-
dimensional parameter spaces, is defined by a linear operator
of a differential -transfgyxmation in the transition from one
system of reference to another. Subsequently, .the. differential
transformation matrix which.describes-the.transformation of
exrors in transition, in contrast to the coordinate transfor-
mation matrix, will be @alled the transition matrix. The trans- _
ition matrices which connect the differentials of parameters of /155
motion in different systems of reference with unequal dimensions
of physical coordinates, together with orthogonal matrices, also
include nonorthogonal matrices.which describe the direct dif-
ferential transformations .of parameters with non-identical dim-
ensions, - Being linear operators, transition matrices describe
the transformation of coordinates in. the case -- and only in
the case. -- where,"' first, the coordinate systems examined are
Cartesian (generally speaking, optionally rectangular) and second,
the position vector's components only. describe the location of
the SV or the observer in the. chosen system of reference.
In‘describing the transformation of errors. in the transition
from one region of parameters ko:another .and indicating the
spe01al features of these areas, the transition matrices play

143



in problems of.defining'the,parameters of motion;

5.3. A Quant1tat1Ve Approach'to Evaluatxng Propertles for

In evaluatlng the accuracy and deflnltlon of a velocity

vector in the field of the signal received with regularly
. changing parameters, opexations for finding the first and

second ACF signal derivatives according to the components of

the vector of evaluated elements at the point of their a priori
- knowledge, and solution of equations (3.1.7) and (3.1.8) are
related to the significant operations of time-space filtration.
Correlation matrix By for defining corrections to precise para-
meters g in the case of the absence of matrix By, of errors in
a priori data coincide with correlation matrix g 4ir for measure-
ments, and with accuracy to constant factors, is numerlcally
egual to the inverse matrix of the ACF signal second derivatives.
Thus, for a signal with.regularly changing amplitude and fluc-
tuating initial phase, the €ofirections vector Ag and correla- .
tion matrix By are defined by the relations

I_B E[ gk(ga _{Eg (ga}1‘

(6.3.1)

oo ]

e SN _:.;H__**L [,

N V -1 ¥
Bkwwméﬁm&},

k=1
e n e p——— ) s ( 6 - 3 - 2) /156

Ny
2

Bgz_

in which the signal integration in defining the derivatives is

conducted within the limits of each of the coherence intervals,
and summation.is at all intervals N. The derivatives are taken
according to componerntvectors g at the p01nt of their a priori

value.

Subsequently, matrix Wgﬂisunecessary to definé; the expres-
sion ' :

IRV e
2 . I ..
g = FO 2 I: Z Ek(ga) - _2—' \'E‘gk(gﬂ) ] '

LE)]

Lo - . e C e (6.3.3)

and also the matrix which is inverse to correlation matrix B

g*
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It will be designated by Ug.
If an evaluatlon.of accuracy is carried out at first on the
basis of the time-space filtration of the signal received and
corrections. Ag to initial. parameters. g (the initial conditions
of motion in .a rectangular system of .reference) are defined by

" . means ofs solv1ng equations (6.3.1) and (6.3.2), and then the

problem is posed of obtaining evaluations of final parameters
qg: the corrections vector Ag. can be calcui&ted on the basis of
the transformation formulas shown above:

Aq = p~1 Ag, (6.3.4)

where P = Gg/dq'ls the transition matrix connecting the dif-
ferentials of the position. wvector components given in the ini-
tial and terminal parameter areas.

The error correlation matrix Bg for defining parameters d
can be caléulated by transformlng correlatlon matrix Bg [15;
19]: :

'——pls(plr
- - (6.3.5)

In directly making terminal parameters ¢ more precise
in the received signal field, the correction vector Ag and
the correlation matrix are defined.by the expressions

R T .
S e——— it e —

N
2 . 1 ., 1
Aq=——8 z: z —— G 4|,
q Ng q [ qk(qa) 9 Eqk(q )_ (6_3_6)

_.N N : __I - !

‘e N . o, |
B‘-I — ?D" {2 [qu (qn) - 7 E‘Eqk (qa)J’ .
=1 | | (6.3.7) /157

Taking into account that both systems of parameters g and
g describe the space-time position.of .a material object moving
according to the same principle,. each .of the terms of the sum
of first . 'and second derivatives according to . .the components of
vector g.can be represented by the relations
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, 1 . R - ' . A, = (,“ ISR '
R I L
.. . — = o 6.3.8)

.- " . 1 /‘5; N C v -l_f'n Ie
‘ Zq (qa') - “2_(E‘q (qn) == PT |Zg (ga) - 'Q_(Eh (ga)l P. {,
2T (L3009

'

The value of the elemeénts of transition matrix P 2i§ not
a function of the coherence interval..  The terms in brackets,
representing derivatives according to thefélements of vector
g, are functions of its components, given by its a priori
values. In substituting expressions (6.3.8) and (6.3.9) in
formulas (6.3.6) and {6.3.7), the latter can be reduced to
relations (6.3.4) and (6.3.5), respectively, Therefore, it is
‘possible: to conclude that, regardless of whether the terminal
parameters of motion g are evaluated directly or.are obtained
by means ‘of reducing the results of evaluating .initial para-
meters ¢ by using transition matrix P, corrections Ag to the
precise parameters and their correlation matrix Bq are always
identical. ‘

The error vector correlation matrix can be used as a
property in evaluating the exact properties £&8r defining the
parameters of motion. 'However, in practice, the use of such
an exact property [19] as the correlation matrix determinant
whose value, correct to constant factors, is defined by the
volume of the multidimensional error ellipsoid‘in evaluating
the chosen set of parameters, is more convenient. The con-
nection between the volume of the error ellipsoid and the
determinant can be represented by the following function [15}:

. V“‘.: =12 ) det Bg/l" (%—}-1) . {
< L (6.3.10)

where m is the dimensionality of the ellipsoid, defined by the
dimensionality .of the multidimensional Space of parameters g;

I'(m/2+1) is.the gamma. function.

In this connection, .if -the volume of ' a multidimensional.
dispersion ellipsoid. in'the. space.of. the. selected parameters
is used for evaluating the exact property.for.defining the para-
meters of motion, for a quantitative evaluation &f the pre-
cision properties and charateristics. for defining different sys-
tems of parameters of motion, it is sufficient to know the
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determinant of the error.corzelation matrix By for defining the
components. of the initial system.of parameters. g .and .the deter-
minant of the transition matrix P, since knowledge of the latter
offers the possibility of. computlng the determinant of

error correlation.matrix. By in evaluatlng terminal parameters’

g. With the same dimensiconality of multidimensional spaces of
parameters g and g, the relation is correct

det Bg = det Bg/(det P)2, (6.3.11)

‘Thus, in m—-dimensional spaces with the same. metricediin the
range of the parameters' definition, where the value of the
determlnant of. the ACF signal second derivative matrix is high,
the volume of the dlsper51on ellipsoid is small, which attests
to the high accuracy in defining the parameters. of motion.

The :reverse is also true: In an area of space where the deter-
minant of matrix U, is -small, the accuracy of the determinant
is small, and the geflnltlcn accuracy is not high. Theréfore,
in establishing ranges within' the limits of which Ug ~ 0,

we can judge the distribution of measuring complex areas in
using the sélected set of parameters,

We should add that, since at present -the solution of sys-
tems of nonlinear eguations with respect to the defined para-
meters is done by a method of successive approximations, the
solution process will contain a smaller number of 1teratxon
cycles the larger the determinant of the second derivative
matrix is. With a decrease in the determinant, the velocity
. 0of convergence becomes less; in this connection, for a con-
vergent solution, more precise a priori data for forming the
reference signal are reguired. A solution in the area of the
. parameter definition in which det Ug =+ 0 becomes especially
difficult. Theimagnitude of the determinant.of matrix U, is a
function of the distribution of elementary receiving anténnas
in ‘space, the statistical characteristics of measurement
errors, the geometric conditions of cobservation of the 8V, and
the choice of a- system of initial parameters used for describing
itsispace-time position. In defining. terminal. parametexrs q,
the nature of the change in the determinant of ACF-. sighal second
derivative matrix Ug, being a function of the values of defined = /159
components g, can be studied by means of .the transition matrix -

det Ug = det Ug(det B)2. ©(6.3.12)

A characteristic feature of transition matrix P, in the case.
of its nonorthogonality, is the functional dependerice of its
elements and determinant on the components of parameters d.
Investlgatlng this feature allows us to study thejiianfluence of
" the rangew of definition of evaluated parameters of motion g on
the accuracy of their definition. It is evident that the dis-
gl ‘
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continuity.of matrix P or.its, poor conditionality results in
'the.@iscontinuity,or”poor:conditionalitywof matrix Ug, also.
The last leads not only to an. increase in the volume of the
multidimensional,dispersion'ellipsoid,.but,alsoxtolan increase
in the error dispersions in defining the separate components
of position vector g, whose values can be calculated by means
of the relation ‘ '

det(PUP) |

N, = T U (Ceipie
f detUg(detP) (6.3.13)

where P: is a matrix of dimensions m x (m-1), derived from
transition matrix P by means'ofmdeleting.the,jth columns

. Let us note that the relations obtained which connect the
correlation matrices of errors in defining parameters g and g
and their determinant. are correct not only where the parameters
of motion are defined.as.a result of the space~time filtration
of a signal with regularly changing amplitude and fluctuating
" initial phase, but also where any other signal model is used
in the measuring complex .(see §3.1}). These expressions are
correct with. the presence of matrix Bgg of errors in a priori
data, which must undergo a_transﬁorma%ion.in.conformity with
expression (6.3.5) in the transition from. initial to terminal
parameters. Moreover, these relations also take place in using
an automatic mode for measuring parameters with appriori data
in systems of space-time filtration, when the evaluation of the
parameter vector at a defined moment of time tg is done
in proportion to the signal integration, and a priori data con-
tinuously changes with the value of. the corrections obtained,

- approaching its real value. ‘ '

The relations. derived will also remain valid for the case
where a complex of several electronic systems are used, dis-
‘tinguished either by. the parameters. of the signal used, or by
the SPatial”configurations“of‘themreceiving_antennas, etc. Actual-"
ly, due to the linearity of the .equations. examined, which are
used in defining,theAcorrections.to the precise parameters, and /160
that the corresponding elements of different matrices W and U )
have the same physical dimensicns, the corrections. vector Aq and
the integrated correlation .matrix.of errors in defining para-
meters g can be represented by the expressions

‘Aq=BqSEan,

=}

(6.3.14)
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(6.3.15)

where

g) n

< . 1 .,

N{, [ zqk (qa) - "“2— (E'qk {QG)J
A=l

is the matrix of ACF signal first partial derivatives of the nth.
measuring system accordlng to parameters q:

an_-— N, B{ qk( ﬂ)_"_“' k(qa)]

is the matrix of ACF 51gna1 second partlal derivatives of the
nth system. . Applylngﬁtransfarmatlons j(6.3.8) and (6.3.9) to -
matrices W qn and Ugpn, and inserting the relations. derived in
expr95510n5' (6.3. lg) and (6.3.15), we obtain

e T e b e m—

. s \
Aq_(E P Ugn ) E P WEm
LED!
Bys = (2 Pr Ugnp)“l ,
. nal i o

which are equivalent to relations

Ag = p-lAg, (6.3.16)
Bgs = P “lpgs (el T, (6.3.17)

In formula  (6.3. 17), matrix B,g is an integrated matrix of
errors in’ deflnlng parameters g, in the.complex.

Thus, for a complex. of different electronic meters, the
precise properties for defining parameters.of motion in dif-
ferent systems of weference.can alsoc be represented in the form
of a set of properties for definitions with' the use of the
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initial system of parameters. g .and. the properties of transition
matrix P to terminal parameters ©f motion.g. The nature of the
transformation. of errors in. evaluating. parametexrs. .in.a complex
of diffefent measurement.systems will .remain.the same as in
using- any ‘one of them. . However, the accuracy of the evaluations
obtained is smgnlflcantly 1mprOVed.

In defining, in addltlon to the parameters of motion, the
systematic errqr in producing the ACF signal, as a function,
in particular, of the constant mismatch of frequencies of the
received and reference signals, the secondarily evaluated para-
meter can be interpreted as an additional coordinate in the
systems:iof reference examined.. The dimensionality of the
enlarged systems of reference becomes a unit larger, since the
axis of the additionally evaluated parameter (of freguency
correction}. becomes their axis. It is characteristic that
in all systems of reference examined, this additional parameter
will be the same. Therefore, the peculiarity of the transition
- matrix between the .enlarged systems. of reference is that
. the relative character. of the .error transformations in evalu-
ating these sets of parameters will be preserved during the
transition from one system off reference to another, the same as
with their combined definition.

From expression (6.3.1l1l), we can see that for a complete
quantitative characterization of the accuracy of defining the
parameters of motion in'the newly selected systems of referémce,
we must know the determinant.of the error correlation matrix for
evaluatlng the parameters of initial system g and transition
matrix P, In this connection, if- the more precise properties
for defining initial parameters g are investigated, then for
a comparative analysis of the precision characteristics for
defining other systems of parameters g, it is sufficient in
some cases to study the properties of .the matrices of transition
from initial to terminal parameters, by means of which the results /162
of orbital, nav1gat10nal or. geodetic definitions will be re-
presented. Of the entire set of newly applicable systems of
parameters q, whose components have identical. dimensions, the
best one is the one whose €rans: onématrix determinant will be
greatest in ‘the entire range of deflnltlon of the parameters or
its individual, practically used range.

5.4. _Method”ofﬂﬁnalyzinggTransition‘Maﬁrices

The purpose of investigation .transition matrix P between"
the differential components of the position vector, given in
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the erea.ofrinitial conditions ¢ of a.rectangular system of co-
ordinates. OXYZ..(Fig. 6.1) .and. .:the selected .terminal parameters

- g, 1s the definition of those .areas. of definition of the in- -

dividual elements in a finite system.of parameters where the
transition matrix becomes singular. These areas will be called
"zones of reduced accuracy." -Moreover, it is necessary to
define those areas of parameter definition where the elements
of the transition matrix do not exist or are close to these
values, and there is practically no possibility of solving the
proﬁgem of defining the selected set of parameters.

For finding the zones of reduced accuracy in defining
different sets of. parameters,.lt is advisable to represent
position vector g in the form of the product of some matrix
factors whose elements are functions of one or several parameters.
Such a representatlon .of position vector g allows us to write
transition matrix P and its elements rather compactly, and is
also an analytical means of 1nvest1gat1ng the properties of
the transition matrix.

We should note that the eIements of the transition matrix
. which represent scalar functions can also be expressed by means
of the product of the matrix factors. The proposed method of
investigation does not require representing the elements of the
transition matrix in an expanded form or varying the values of
the orbit parameters in analyzing each of the matrix elements
separately. This method assumes that transition matrix P is

in the form.of a matrix row of vectors, and that .these vectors
are investigated up to thelr -degeneration to zero-points, and
that the proportionality between. them is defined.

Moreover, the representation of the transmtlon matrix
elements in the form of the product of the matrix factors offers
the possibility.of der1v1ng the determinant of this matrix by
an analytic method. In thlS connection, the process of cal-
culating the determinant and analyzing the matrix is signi-
ficantly simplified, since those elements which yleld similar
terms during mathematical transformatlons are excluded from
the calculated. relations. :

We will demonstrate the method of: analyzing transition
matrices by analyzing. the matrices: of transition between dif-
ferentlal~components of. a. p051t10n vector, given in the area
of initial conditions of a rectangular coordlnate system OXYZ,
and the Keplerlan elements of orbit:

qf'; ][i w2 e aMpll.
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. Lls  The fundamental form.of .representing transition matrices /163

~ For investigating the properties of transition matrices which
define the transformation of .errors in navigational or geodetic
definitions in converting from one.system of. parameters to
another, and also for definition errors as a function of the

~~ area of definition of the evaluated parameters, it is suf-’

ficient to study the propertigs of these matrices only injithe
form of (6.2.23). Therefore, such a notational form is *finda-
mental. Actually, the expression which defines the relation-
ship of the ACF signal second derivative matrices in defining
the components of initial g and terminal systems of parameters
9, can in the general case, be represented by the following
function: ‘

T PrULP. PLULP, P" Uy P
PrU. Py PLUP, . .. PLUP.n

Vo . _ . |
Pt UP. PTUP: ... PLUPL

(6.4.1)

which shows that Wiihmnon-null matrix Ug, matrix Uy will be sin-

gular (det Uq=0) when one or several columns P_j a¥e null, or
there is proportionality between them.

Thus, for example, if the jth column of matrix P is a
null vector,; then for all n and k¥ (n, k=1, 2, ..., m), we will
have the identity

: P'_rjng_” = kang.j = O,
T (6.4.2)

i.e., the jth row and the jth column of matrix U, will degenerate
to gzero. If, between the jth and ith columns of matrix P, pro-
portionality (let P . = P ;) is observed, then for all elements
of matrix Ug which contain the given columns, the relation will
be true

Pr.UP.;/Pr UP., = P'f,.UgP.,,/P:rI.UgP.,, = 1. /

— e —

(6.4.3)
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. This corroborates the fact.that between the jth and ith
GOlumns.(rows) of matrix U, there is proportiocnality, ive.,
matrix Ug is singular. Thérefore,.. in investigating. the effect
of a transition.matrix .on.the s;ngularlty of. deflnlng parameters
d, it is sufficient to study only the columns of these matrices.

2. Crlterla for analyzlng'tran31t10n matrices

_ In order to find theearea.of reduced-accuracy in defining
Keplerian parameters of orbit, due to the characteristic
features of transition matrices which directly reflect the pro-
perties of the indicated parameters' space, it is necessary to
define the areas of definition of Keplerian parameters of orbit
for which the. determinant of matrix P. has' a minimufr value or is
equal to zero.. This will be. the area of space of the Keplerian
elements in which matrix P is close to singular or is singular.
First of all, we will attempt to find those areas of the
definition: of- Keplerlan&elements of orbit for which the deter-
minant of the matrix apprdaches zero. In this connection, it
will be assumed that the determinant of the matrix is egual to
zero only where the columns of matrix P degenerate to a null
vector or proportionality (linear function) is observed between
them.

We will study a transition matrix written in the form of
{6.2.23), i.e., we will examine columns P_4 of the transition
matrix in their degeneration to null vectors and in the pro-
portionality between them.

From the preceding material, we can see that none of the
matrices which comprise -the factors in matrix column P § de-
- generate to null matrices,. nor with real values of the Keplerian
parameters of orbit and instantaneous argument E. Therefore,
elements P_s of the transition matrix can take -zero values only
in cases whére the linear combination of elements of the
matrices, as a function of argument E .{of the elements of matrix
gl and derivatives of its components ‘according to .parameters a,
e, My }, and. the elements of other matrix factors (the elements

of matrlces G, H, .8, .and their derlvatlves with respect to angle

(Q, i, w) are equal to zero,

As the cniterionfgfrgthewdegeneration”of any of. the vectors
P_g.to a null vector, we ‘can .take the condition of .equality to
zero . of the modulus of vector P, or its sguare. Actually, P.3
can be a null vector. cnly when there is the eguality

T p.,\ =
P.jP.J 0. (6.4.4)
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We can accept the condition of equality to zero of the
modulus. of. the difference of twoivectors., .cne ‘0of which is the
vector in question, .for example,'_uj, and the. second. is the pro-
duct of some real.scalar magnitude @.in, the .second.vector P i
‘as the condition ‘of the linear. function. (proportionality) of two
vectors P g and P_j. - If the product gs formed by

(p,_apt) (P,—-aP )=8, | (6.4.5)

then it is possible to show that this expression will equal

zero only when there is proportionality between the components
of vectors P_5 and P.i, and « is the proportionality coefficient.
Consequently, the prcblem.of studying the proportionality of two
vectors. is the: problem. of finding:a real value of coefficient

¢, not equal to. zero, by which, considering the area of defini-
tion of parameters g, the equality will be obtained

| (P'““P ) (P —aP.)=0. | . (6.4.6)

If this‘equality is derived with a=0, then condition (6.4.4)
is factually . fulfilled, i.e.,'Plj_is.theqnull.vector.

It is posélble to show that 1if P 5 and P j are orthogonal,
then expression (6.4.5) leads to the realation’

PT,P.,T#PTfP.m.G f ' (6.4.6)

‘and can be equal to zero in the range of definition of parameters
q, in which both wvectors are null, since: orthogonal vectors are
linearly independent. :

We must.note . that .condition (6.4.6) is satisfied when the
Bunjakowski~Caucliy. inequality, used in. [4] for describing the
general properties of. navigational methods resulting from the
features of. fundamental matrices.with.averaged elements, is .
converted to. an .equality.
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On. the basis. of. the investigations .shown in deflnlng and
. analyzinggithe squares of the moduli. of -the. vectors in matrlx P
(6.2.23), we can come to the following ceonclusions.

The square of the modulus. of the. flrst vector PTlPl for:
elliptical motion is not equal to zero, whatever the values of
the Keplerian elements are.. However, when time tg corresponds
to the moment of the SV's passage over.the equator, derivatives
of. the coordinate components .of position vector g with respect
to the angle of deviation of the orbit are egual to zero. More-
over, the square of -theismodulus of velocity components for this.
vector in.parabolic orbits is equal to infinity; for hyperbolic
orbits, its wvalue becomes negative, This indicates that for
describing. parabolic and hyperbolic orbits, it is necessary
to use another system of parameters. In particular, for'parabolic
orbits, it is sufficient to reraln only. five parameters, since
the sixth ‘can be determined by the limitations superimposed on
the existénce of a parabolic orbit .[28]. .For hyperbolic orbits,
the semimajor axis loses the value which it had in elliptical
motion,

For elllptlcal orbits, the square of the modulus of the
third vector PT,p does not have zero values. However, it
shows that derivatives 6f ‘the coordinates components of position
vector g along the parameter of angular distance of the ascen-
ding node with i, w = 90° and E = 0 (moment of time tp corresponds
to the SV's passage of the vertex.point in a polar orbit) are
‘equal to #ero, With these values for the deviation or the orbit
and angular distance of the perlgees for cases where moment tg
corresponds to the SV's passing over the equator, the deriva-
tives of the ve1001ty components along the parameter of the
angularlrnterval«of the ascending node are egual to zero.

In defining the square of the modulus of the second,-
fourth, and subsequent columns of matrix P, we come to the con-
clusion that these columns. do not.degenerate to zero, since the
squares. of their moduli are defined by the sum of the squares
of the last factor's. elements .which, whatever the. values of
argument E and  the other.intraplanar. parameters, does not
degenerate to a null vector.

In investigating matrix P's propoertionality between columns,
data were obtained.which show that: between . the first and second,
fourth, fifth. and sixth vectors (columns) of expression (6.2. 23),
propor tionality is notpobseIVed. These vectors are mutually
orthogonal, and since none of them are non-zero, then condition
(6.4.6) is not satisfied.
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We should empha51ze that.in #nvestigating a transition
matrice with proportionality:-between. colunmns, special
attention.should. be turned.to. the wvectors which.contain deri-
vatives of the position vector. components with respect to para-
meters of identical dimensionality (in particular, with respect

- to angular elements), and to those ranges of parameter defini-
tion in whlch, with respect to the phy31cal expression, one
‘element of. orbit or another loses sense. .Thus, investigations
of expression (6.4.5) for the second and’ sixth columns of the
matrix showed that it becomes equal to zero with &-—l for e=0.

" The equallty to zero. of . the expression referred to. indicats
that in this case .the transition matrix becomes singularg
and it is not p0551ble to define all six Keplerian parameters.
This is clear, since in the given case the ellipse degenerates
into a circle, and for a olrcle, the. parameter of the angular
intefval of the perlgee & loses. meanlng. In this connection,

. for deflnlng the SV's initial p051t10n in orbit, corresponding
to moment tpy, one angular parameter is sufficient. For the
coordinate components of. these.vectors, proportlonallty with
any value of eccentr1c1ty is’ observed when time. t corresponds
to the moment .of the SV's passing the poant of the perigee or
the apogee.

- Expression (6.4.5) for the second and third columns of tran-
sition matrix P in the condition where the longitude of the
ascending node los%ahitsfphysical.senee.(i=0) satisfies re-
quirement (6.4.6). This indicates that proportionality is ob-
served between the second and third columns of the matrix (deri-

" vatives of position vector g with respect to scalar values { and
w) . Therefore, the Keplerian elements of orbit with small
values for the angles of deviation are not veryzeffective,

For describing these orbits, we must use anocther system of
parameters. In particular, in reference [3] it is recommended
that the cosine of this angle be used instead of the angle of
deviation; however, the effectiveness of such a substitution
requires further investigation.

for almost circular orbits with small angles of deviation
along with proportlonallty between. the second and.third columns,
proportionality is also observed. between the third and sixth col-
umns’ of the matrix.

For defining the proportionality. between columns P - and
P jr- other criteria can be used. .In. partlcular, it is p8551b1e
to introduce "angle” 0 between vectors P - and P_j, by analogy
with the scalar product of vectors in three—dlmen51onal euclidean
- gpace, having determined it from the relation’
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cos20 = (P, P2 /(P P.)) (PT,P.y). S, (6.4.8)

The values of the parameters which satisfy the condition:

cos?p=1 define the range of their possible definition in which
matrix P becomes singular because of -the. proportlonallty of its

~.columns. Investigations with the aid of the criterion indicated
confirmed the correctness.of the conclusions drawn earlier and
showed that the cosine of the angle between. columns P 5 and

P a4, P o and P P .3 and P_Gs i8 connected corresponalngly with
parametérs i, &, 1 and e by ;-7 a functional dependence which

with i, e =0 reduces the cosine of the angle to its maximum value.

With i, e=0 in a system of. Keplerlan parameters as in the
system of reference used for describing the SV's positicon vector,
~ there 'is a linear.dependence between some of .its components..
These correspondences are the .angular parameters w, £, and MO'
The linear dependence leads to the same response of the ACF signal
"as in using the parameters indicated, which causes proportion-
ality not only between the columns of the transition matrix,-
but also between the columns and rows of the ACF signal second
derivative matrix with respect to defined. parameters g. For
“orbits with eccentricity or. inclination close to zero, the matrix
of ACF signal second derivatives, depending on the position of
the'measuring agents used and their complex,.is badly specified,
resulting in significant errors in the definitions. The con-
ditionality of"’ the matrlx can be improved by using other elements
of orbit.

Thus, these investigations show ‘that the zones of reduced
accuracy, due to the characteristic properties of the space of
the Keplerian parameters of orbit (the latter. are refracted
in the properties of transition matrix P), are observed in the
ranges of their definition in which one or several elements
lose physical sense., In this connection, for a unique defini-
tion of the SV's movement, it .is: possible to use a smaller
quantity of. independent generalized parameters -(the case of
degeneration of an ellipse .into a circle or. parabcla) or to intro-
duce new parameters. of .orbit (the case of elliptical eguatorial
and hyperbolic.orbits) instead of the Keplerian elements of orbit.

"~
l-l
o)
~]

For elliptical eguatorial orbits: (i=0) and for the case
where elliptical orbits degenerate.into. circula® orbits, trans-
ition matrix P becomes singular and it:is not p0551ble to define
all six Keplerian parameters.
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In the .proximity of .setting the Keplerian orbit parameters
dlrectly adjacent .to .the values.:in which. transition. matrix P is
singular, this matrix will.be .close. to singular, which causes
51gn1f1cant zones of reduced accuracy in deflnlng the parameters
of motion .g- to appear.

5.5. Characteristics of Parameter Definiticn in Rectangular and
CurV111near Systens of Reference

~ 1. Rectangular systems

.As the initial system of parameters g, we will choose a
system of elements: which. describe the initial conditions of the
SV's motion in some réctangular system of reference, for example,
in a system of coordinates connected with the observer. Then,
selecting the coordinates and velocity of the 5V in any other
rectangular coordinate system g, for example, in different geo-
centric systems of reference, we will discover that, due to the
orthogonality of the matrix transition which describes the
transformation. of differentials (6.2.5), the modulus of its

~determinant is. equal to one.. This means. that the possibilities
of making the parameters of motion mére precise in an arbitrary
rectangular system of reference are not functions of the range
of definition .of the coordinates and velocity and are identical
- for all rectangular coordinate systems.

-2, Curvilinear systems

For the sake of convenience, we will examine the rectangular
geocentric system of reference whose plane 0XY coincides with
the basic plane of the curvilinear systems of coordinates, and
axis OX coincides with some. characteristic direction with
respect to which angles are read in curvilinear systems, as the
initial system. In this connectlon,, bxwﬁ transition matrices
P, we will imply one of the matrices defined by relation (6.2.15).
The transformation matrices indicated are quasidiagonal; there-
fore, their determinants are expressed by the determinant of
direct transformationiimatrices of differentials W., Wg and Wg.
The latter can easily be defined, since. differential direct.
transformationumatrices‘are-diagonal.(6.2.12).

Thus, . the, determlnant of . the. transition matrix f
ferentials .of 1n1t1a1 conditions of motion in a. spherlcal
coordinate system is equal to

det Pony= (detjg}{zﬁ_(dethggzg. (6.5.1)

b
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The relation. of the determinants of error. correlation; matrices
in making the. parameters of.motion more precise .for rectangular
and spherical coordinate.systems is expressed by the function

CdetB, =—detB. /ricos‘e
e el 7 J (6.5.2)

~which shows that the volUme of the. dispersion ellipsoid in defin-
ing the initial conditions®f motion in a spherlcal system of.
referque is increased when. ry decreases and ¢ increases.
In confijrmation of this, the graph of the function which de-
scribes the change in the dimensions of the volume of a multi-
dimensional dispersion elllp501d Ain using latitude ¢ and
relaticn rK/erlnr where rymin is the minimally possible radius,
is shown in Fig. 6.2. If the SV s-motion occurs in a circular
orbit, then the dimensions of the dispersion range for defining

Fig. 6.2. The nature ofrthe
error elllp501d s volume change
with:a change in spherlcal
latitude and relation rk/erln-

. the parameters of motion in a sperhical system of coordinates
will be a function of.only theﬂlatitude‘ofuthe SV's position.

~In the. flgure, this function for several fixed values of
radius vector rx is indicated by .the solid lines which lie in
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the planes parallel to coordinatei.plane KOb%.

In. converting. to.parameters of..a.cylindrical system of
coordinates,. the .expression corresponding.to.the transformation
of numerical values of -the .volume of multidimensional ellipsoids /169
described by error correlation matrices for making the com-
ponents of the' p051tlon vector more precise, given by. the initial
conditions of motion in rectangular and cylindrical systems of
‘reference, have the form

Vdct Bq'_m) = VdEt BE“'—'ﬁﬁ Pz' } (6 . 50 3)

QAR o e

Expression (6.5.3) shows that the dimensions of the dis-
persion range.in evalua$1n *;he parameters of motion in a cyl-
indrical system of coordlnates are a function of only one com-
ponent p of the SV's position in a given system of reference and
are not functions of other components of the parameters. With
a decrease in coordlnate p, the dimensions of the dispersion
range increase, 51nce errors in defining the angular parameter
in a cylindrical system increase with identical linear errors
along the parallel. They are inversely proportional to para-
meter p. Note that with p=0,. the transition matrix, correspond-
ingly, and the matrix .of ACF. signal second derivatives, with a
direct definition .of the parameters of motion.in a cylindrical
coordinate system, become singular. It is true that p=0 loses
sense, the SV position parameter is one like A,, and as a con-
sequence, the response of the ACF signal at this coordinate
disappears. Therefore, for solving the.problems of defining the
parameters of motion of a polar SV in a glven system of coor-
dinates over a pole or in its proximity, an increase in errors
is observed.

Thus, in using cylindrical or. spherical systems of reference,
congruence of the reference coordinate plane of these systems
with.the. plane of . orbit is considered. more. preferable, as recom-
mended in.references [25, 26} for a.cylindrical system of co-
ordinates, Let us recall that simplification of algorithms
for processing measurement data and.a corresponding decrease in
computer .time . [25] are also.obtained. It should also be ngted
that in 'this case, since cos¢=1 and ry= p, the cylindrical “and
spherical. systems of coordinates are equivalent, and only the
magnitude of the.defined radius vector of the. SV influences the
definition of the parameters. of motion in these systems of
reference. However, in the. general case,<ay %

spherical systems of coordinates are nonequivalent. A spherical
system of reference which contains two angular parameters Ag and
¢ is more sensitive to a change in the SV's radius vector than
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o a cylindrical.system.

Theldeterminant.of.the.transition_matrix”which-establishes
the relation between dispersion.: e111p301ds in.defining the
initial conditions.of .the SV's motion in geodetlc and rec-
tangular geocentric systems. of: coordlnates is calculated by
means Of, the relation

RS A B [ (650

which can be reduced to the following expressions:

PO

e (14 sin;Ba | 1—é? . )
R 2 Lo 3
(-jEt,Bg [S T (1 —éf ‘?i‘ﬂgBé;}'?f? S+ (1 %e% Sin“&g ] X
h Xajeos? B, (6.5.5)

where s = H/aj.

_Thus in making the parameters of motion more precise in
a geodetic system of reference, the num@rical value of the _
volume of the multidimensional dispersion ellipsoid is a function
both of the coordinates at moment ty of the precise parameters,
and of the elements of the reference ellipsoid with respect to
the plane of which the definition was made. In evaluating the
parameters of motion, the properties of the definitions are a
function of the gecdetic latitude B and altitude H of the SV -
with respect to the surface of the. reference elllp501d With
the dimensions of the area of dispersion given in a rectangular
system of coordinates, the number values of the error ellipsoid’'s
volume in a geodetic system of reference increase with a decrease
in altitude H and an increase of latitude Bg. The function below
is shown in Fig. 6. 3

'K'_ ‘ T (1 — ez : \
= 7 3 | — &2 T2 '
e%(1 4 sin B ) e} J cos?B - \

— ¢2 sin? % —el Sin?b"ﬁ2 ‘gl
S R {(6.5.6)

which -describes the change in the dimensions of the dispersion
area as a function of the geodetic latitude B and the relations
of the altitude of. the SV's position at momen% tp over the plane
of themreference ellipsoid with respect to its semimajor axis.
For actually ex1st1ng orbits, the zones of reduced accuracy in
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defining the initial conditions of motion in a geodetic coord-
.inates system.coincide with the range of their definition, for
‘which By - 90°. More marked. detéfiforation in accuracy is observed
for polar. orbits when .the. moment.of. time tjp coinecides with the
moment of the SV's passage over the .poleor over its: proximity

in which geodeti¢ latitude Bg exceeds 80°. With Bg=90°,

transition matrix Pg becomes singular.. Therefore, the matrix

of ACF signal second derivatives, with direct definition of the /171
parameters of motion in a geodetic system of reference, will T
be singular. Moreover, in some ranges of definition of para-
meters g4, which adjoin the p01nt of multidimensional space
with a latitude equal to 90°, the value oftthe determinant

of the ACF second derivative matrix will be small, which, as a
rule, results in the instability of the inverse correlatlon matrix
-and a marked increase in the error dispersions for defining

the selected set of parameters. The .instability of the correla-
tion matrix, as we know, is a function of the fact that for

small. values of the ACF signal second derivative matrix deter-
‘minant, small changes in its elements cause a change in the
elements#of the inverse matrix within 81gn1f1cant limits. The
appearance of zones of reduced accuracy for reglons of element
definition in the chosen systemsof parameters, in which’ the
determinant of the transition matrix and the matrix of AEFK

signal second derivatives approach zero is explained by this.
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Fig. 6.3. The nature of changes
in the error ellipsoid volume with-

changes in the geodetic latltude and
relation H/atz
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6.6. Prqpertles of Keplerlan Elements of Orblt

As above,‘we will examine a geocentrlc rectangular equa-
torial system.of coordinates as’ ‘the .‘initial system, and the
system of parameters gT = |]i w @ a e Mp]] as. the system of
Keplerian elements .of orblt

" An investigation of the properties of electronic methods
for defining Keplerian parameters of orbit will be carried out
by studying the properties of a transition matrix which des-
cribes the transformation .of errors in definitions in converting
from initial conditions of motion in a rectangular system of
reference to the Keplerian elements mentioned. In this con-
nectlon, since the wolume of a multidimensional dispersion ellip-
soid is used for describing the accuracy of defining the para-
meters, whose numerical value is equal to. the determinant of a
correlation matrix (which includes a transition matrix) with
accuracy to constants, for studying the indicated properties,
it is sufficient to calculate the determinant of this matrix
and invesfigate its value as a function of the region of
definition of the individual Keplerian elements of orbit.

.For flndlng the .determinant.of the matrix 1ndlcated we
will use relation (6.2.39). In this connection, since
matrices G, H and S are orthogonal, .the detepminant of transition
matrix P is‘identically equal to the determinant- of the direct
differential transformation matiix Wg. Therefore, decomposiAfg:
this determinant by the elements of the first column, with each
determinant obtained being of the fifth order with respect to
the elements in the row which contain only one non-zero element,
after the corresponding mathematical transformations, we obtain
"a fairly compact expression for calculating the determinant of
the transition matrix. Having represented this expression in
the form of @, ful tion. of coordinate and velocity components of
vector g1 and their derivatives with respect to lntraorbltal
Keplerian elements, we derive

‘ . o, ay')(ax} .
de”’—{"ﬁ Y1 — ¥ 1)[( Sl + v, o \Te oM,

_ay, 0x, \H( Ox, iy oy N [dx, Ay
oe oM, )\ 1 'de, da  IM,

- . e e . P I
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Expression (6.6.1) shows that it is sufficient to know the
projection of position vector.gj on the axis of the orbital
system of coordinates 0X;Y1Z] and their derivatives with respect

“to the intraplanar Keplerian parameters for finding the determin-
ant of transition matrix P. Moreover, the determinant of trans-
ition matrix P and, correspondingly, the feasibility and accuracy
‘§f the definitions when Keplerian parameters are used, is not

a function of the longitude of the ascending node and the argument
of the perigee, and -85 completely .defined by the angle of devia-.
tion of the orbit and the dntraorbital elements. The value of
the determinant of transition matrix P ‘with the orbit nearing an
equatorial orbit is decreaSed, and for an equatorial'orbit, is
equal to zero; this is identical to the increase in the volume

of the multlvdlmen31onal error €llipsoid for deflnlng the Kepler-
.ian parameters.

We will transform expression (6.6.1) by substituting the
correspondlng components. of vector g; and their derivatives for
the intraorbital Keplerian elements a, e and Mg, taken from
§6.2. As a result of this substitution and:the execution of
a number' of. transformations, we obtain the expression for
defining ‘the matrix of transition to Keplerian parameters

detp—_ £2Vea sin i. f

) (6.6.2)

"As we can see, definition of the matrix of transition to
Keplerlan parameters is a function of only three elements: o,
e and i. Moreover, it is. a function. of the grauvitation con-
stant of central body 4 around which. the SV rotates.
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‘ The essential moment is when..the eccentric or .true anomaly
is taken as the. 1ndependent~variable, and:..the.determinant of
transition. matrlx P..is.not .a.function of. the .indicated instan- -
taneous. varlables correspondlng to moment tg. This attests to
the fact that the accoracy in defining Keplerian. parametersamn
the sense of the volume of .a multidimensional errot, ellipsoid
is' not a function of which moment of time the initial coenditions
are defined in a rectangular system, . The latter, naturally,
is true only in the case where the determinant of the correlation
matrix of errors in defining. the initial condltlons is not a
function of moment ty-

"~
=
-]
L

From expression (6.6.2), it follows that transition matrix
P between the differentials.of the SV's position vector compon-
ents, given by the initial conditions. of. a rectangular system
and by the Keplerian elements, is related to a class of non-
orthogonal matrices. In this connection, since the determinant
of transition matrix P is a function of some Keplerian elements,
we can assume that a system of Keplerian parameters. is a multi-
dimensional, nonorthogonal,  special oblique- angled system of
reference. The distinctive feature of the given cbligue-
.angled system of reference is that the relative position of
its vectors dswanfunction of the magnitude of eccentricity e
and dev1at10n of orbit 1i. ' :

The functional dependence of the relative position of the
basis vectors on the indicated Keplerian elements results in
- the fact that, with a change in the values of eccentricity e
and angle of deviation i, not only the form of the multi-
dimensional error ellipsoid for definign parameters g is changed,
bt also.its volume. Thus, with a decrease in the eccentricity
or deviation, the volume of the ellipsoid.inCreases, and in
the limiting case where e » 0 or i »+ 0, its value approaches
infinity. This is a result of.the .degeneration ‘ofi the
hexaparametric system of Keplerlan parameters, due to which
proportionality. is observed between cclumns which are a product
" of vector. g with respect to. the angular interval of the perigee
and the mean anomaly if e = 0. With 1i=0, there is proportionality
between the derivatives of..the . components of vector g with res—
pect to the .parameters of. longitude of the ascending node
and the angular interval of the.perigee w.

Thus,. the. zonés of reduced accuracy in defining the Kep-
lerian parameters dlrectly border upon the areas of their
definition, in which one or several elements lose physical sense.
The loss. of physical sense by .the .individual parameters is due
to the degeneratlon of the hexaparametric system.of Keplerian
elements into a system with a smaller number of parameters. Thus,
for example, for describing the. angular position.of the SV with
movement.in .a circular. egquatorial orbit, instead of three elements
2, w and Mg, only one: angular parameter egual to.the sum of the
- latter should be introduced.. . Let us note.that the use of systems
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with a smaller number . of. parameters. does.not. allow.us to des-
cribe the 5pace~t1me position. of. the. SV. precisely enough with
its movement "in .almost circular and almost eguatorial orbits.
For characterizing similar.oxbits, as in the general case,
knowledge of the.namericaluvalues,offtheLsix independent constants
is necessary. However, . it. is expedient to use ‘the system of
Keplerian parameters for defining the. elements of the orbits
mentioned above.  For.these orXbits, other .systems of- parameters
should be used, among which are systems which contain elements
representing a linéar .combination of .the angular interval of the
ascending node, the.periqgﬁhand.the.mean anomaly.

Expression. (6.6.2) offers the possibility not only of
defining the position of the zones of reduced accuracy resulting
from the properties of the space of the Keplerian parameters
of orbit, but also. quantitatively evaluatlng the deterioration
in the accuracy of definitions with respect to the increase ‘in
volume of. the multidimensional ellipsodid of errors in trans-
jltlon to these #oenes. .Since the determinant of transition matrix
P is a component part of the determinant’ of the correlation mat-
rix of errors in evaluating Keplerlan parameters which, with’
accuracy to constant factors, is numerically equal to the volume
of the multidimensional. dispersion ellipsoid, then by means of
_expre551ons (6.3.10) . and (6.3.11), we can show that the relation

S K= Tdet g detp |

. . {6.6.3) A
where [det Plyayx is the maximum value of the determinant of nfi7 4
transition matrix P, can be ertten in the form

X = Vo/Ve min (6.6.4)

where Ve is the volume of.the ellipsoid of errors in defining
Keplerian parameters of orbit with any assignment of eccentricity
and angle. of deviation; Vg i 18 the volume of the error ellip-
soid.with e=1 and i=9%0°.

It is natural that between.relations. (6.6.3) and (6.6.4)
there .is equality only where the determinant of the correlation
'matrix of errors in making the. initialzconditions of motion
more precise in.a- rectangular ystem with a. change in eccentricity
- and ¥ the-angleWW' deviatithiififorbit remain’ constant.

ettt T BTt

If the value of . the ‘semimajor.axis of Keplerian orbit
remains comstant, then.magnitude K describes 'the change in the
dimensions. of the multidimensional area of dispersion with
changes in eccentricity and angle.of deviation (Fig. 6.4),
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Fig. 6.4. Nature of the change
in the volume of the error ellip-
soid with a change in the eccen-
tricity and angle of deviation of
the orbit. :

With the same values for the determinant of the correlation mat-
rix of errors in determining the initial. conditions, the dimen-
siong of the multldgmen31onal e111p501d of. errors in defining
the Keplerlan»parameters attain minimum.values with e=1 and i=90°,
In this connectlon, the .value of magnltude K is equal to one.
Wwith a change in eccentricity or. angle.of .deviation to the
side of their decrease, the dimensions. of the error ellipsoid
1ncreases, attalnlng an.infinitely large magnitude with e =+0
Qﬂﬁl +0. It is natural that.the value of coefficient K,

with the same values of eccentricity. and angle of deviation,
also appxoaches infinity.

.
f
-]
L[5y

Since with a. constant 'value of..the. semifiajor. axis the co-
. efficient (6.6.3).is a function of two variables K=K(e,I),
. then in the.range;ofrdefinition‘ofuparameters e and i
\ function K{e,i) is represented. by.a. plane. In-the figure, only
kpart of this. plane,.which limits the areas of definition of the
eccentrlclty and angle of deviation within the limits of e=l-
%@025' i=90°-1°,5, ig shown. In this connection, the lines in

|

e plane are the signs of the :dntersection of the given plane
Wlth planes. parallel*to coordinate, i. e., these lines show the
nature of the change in coefficient K with a change in one of
1t$ Keplerian elements within the limits indicated above and with

ixed value of the other parameter... It is clearly seen that
wit \ a change .in eccentricity within. the limits of e=1-0.4 and
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angle . of .orbital deviation within.the l#mits of .i=80°-25°, the
volume of .the multidimensional. ellipsoid.of errors. in defining
Keplerlan .elements .is increased not more.than six times. The
accuracy is. 51gn1flcantly impaired when the’ value. of the
eccentricity (angle of deVLatlon) ‘is lower than. 0,01 (1°).

6.7. Systems of Elements Slmllar o Keplerlan Elements.
Canonlcal ‘Parameters of Motlon

In examining systems of elements similar to Keplerian

and canonical parameters of motion, it. is expedient to use
an inertial geocentric rectangular.ccordinate system as the
initial system,. . and as the intermediate system, a system of
Keplerian elements. Therefore, for the sake of convenience,
we will introduce the following product into the transition
matrix between the differentials of:the position vector com-
ponents, given.by the initial conditions of motion in a rectan-
gular system of coordinates and .the elements of the systems
examined

!

, P; = PNj.
in which matrix.P. describegs the transformation of. differentials
in converting from an intermediate to a rectangular system of
reference, and matrix N_. defines the connection between the
differentials .of the systems of. parameters examined and
the Keplerian elements of orbit. which emerge as the inter-
mediate system of refeéerence. 1In this. connection, for evaluatlng
the properties of canonical parameters of motion and parameters
gsimilar to Keplerian elements, it is also. necessary to analyze
the properties of the determinant of matrix Nj.

.l.._Elementsuof.orbits‘similarﬁtd.Keplerian elements

As systems of parameters similar to Keplerian parameters,
we will examine a . modification. of a system of Keplerian para-
meters which is. described by substituting some of its elements

- for others which are more convenient for solwving problems.

In Table 6321, some modified systems of. elements and the
determinant of the matrices of secondary. tr@nsition N; and the
matrix P, are. shown, and. also the. phy51cally reallzabie values
of paraméters in which det. By > 0. @As we can see from the table,
the use of parameters 51m11ar tO Keplerian. parametens leads to
unequal accuracy. in. their definition . in.the entire.region of

“a551gnm§§t;,of‘these parameters. The VOlume of .the error elllp—-
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soid in evaluatlng the parameters.is.a function .of..the seml— /178
ma;or axis. For the majority of. systems, with a decrease in

tlie semimajor. axis,.the volume increases. As in the case of

- Keplerian parameters. of orbit, .the ‘properties. of. elements simi-

-lar to Keplerian elements do. not depend. on. the longltude of the
ascending node and .the angular interval. of. the perigee. For
actually existing.orbits (a # 0), transition matrix Pj will

be singular in the region of assigning defined parameters in which
‘those separate..from them (w with e = 0 and Q@ with i »~ 0) lose
physical .sense, .and for._defining. the space—time position of

the 8V, knowledge of the smaller number .of parameters ds suf— .
ficient ‘

Let us note that the given tables clearly emphasize the
ddvantage of ‘using separate systems of elemeénts. for solv1ng
problems of making.unknown parameters.of motion more precise for
defining the class of orbits. For example, the system of para-
meters gg for almost circular orbits,q7 and qg for almost equa-
torial orbits do not result in. the appearance of the matrix
characteristics, and. correspendlngly offer the possibility of
solving the problem of - defining the chosen composition of
paramaters to the end.

2. .Canoniciibparameters

Let us examine canonlcal parameters of . motion which are
more. often. used in astronomy for. investigating. the ‘characteris—-
tlcsrof heavenly bodies. The. canonical parameters of motion
can be used successfully for descrlblng the laws"of motion of
a SV, -

The characteristics of several systems of canonical para-
meters are shown in Table 6.2. From the data shown in the table,
we can see that the transition matrices which describe the
relation between the differentials of initial. conditions of
motion in a rectangular inertial system:.of. coordinates and the
canonical parameters. are. orthogonal'mapping matrices
.whese whose: determlnant, .as we ‘know, is egual to ~1. Therefore,

~* the: volumes of the multidimensional. elllpSOldS of. errors in

defining the different systems. of. canonical parameters are
identical. and egqual to.the volume of. the dispersion ellipsoid
for defining the. initial conditions. in. a rectangular - gystem of -
reference.. Moreover, transition.from.one system: of. canonical

- paranmeters. to any other is done by means of. orthogonal transi-

" tion matrices. .

Thus.,, the. features noted. above for defining systems of-
' parameters of motion which. have ‘several values for.the com-
ponents of these systems, are. due to.the specific properties of
"”multldlmen51onal spaces.. of the parameters examined and are
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_connected. with. losses of physical sense of the. individual co-
ordinates of cylindrical, spherical and geodetic systems, and
also of individual elements of different systems of Keplerian

. and similar parameters.of orbit, which can be eliminated by
‘a rational transition to another system of reference. The

different rectangular coordinate systems and systems of canocnical

parameters of motion are free of these features because of

their intrinsic isometric properties.
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